
CS 421 Spring 2012 Practice Final Exam, Part 2

May 5, 2012

1. (Compilation of MiniJava)

Below, you are to give the rules for a try/catch/finally block, which does exception han-
dling in Java. Keep in mind the semantics of this statement:

• Unlike regular Java, only one catch block is allowed here. Ignore code for constructing
exception objects and focus on control flow.

• Code within a try block executes normally unless an exception is thrown. If this hap-
pens, control jumps to the catch block (if present), finally block (if present), or to the
end of the try block (if neither are present).

• Code inside the catch block is not executed unless an exception is thrown. Code inside
the finally block is always executed regardless if an exception is thrown.

• If an exception is thrown inside a finally block, it is not handled - it is thrown back
up the control stack.

• If an exception is thrown inside a catch block, control goes to the finally block (if
present), then thrown, or simply thrown if the finally block is not present.

Recall that compilation rules for statements take the following form:

S, m il, m′

To implement support for exceptions, we must change the format of statement rules to take
an additional location, ex, which indicates where to jump to if there is an exception thrown
within the statement. (ex is a location in the instruction list, not a location in the stack.)
Use this new format to implement the following questions below:

S, ex, m il, m′

To get you started, here is the compilation rule for the try block with no accompanying
catch or finally blocks:

try S, ex, m il, m′

S, m′, m il, m′

(a) Give the compilation rule for the try/finally block with no accompanying catch block.

try S finally Sf , ex, m

1

CS 421 Practice Final Exam, Part 2 Name:

(b) Give the compilation rule for the try/catch block with no accompanying finally block.

try S catch Sex, ex, m

(c) Give the compilation rule for the full try/catch/finally block. When executing in
the finally block, you have to remember whether an exception was thrown, because in
that case, the finally block has to rethrow it (i.e. jump to x); assume that a special
stack location th exists for this purpose, that it is initialized to 0 just before the block
starts its execution, and that it is not used again after this block’s execution is finished.)

try S catch Sex finally Sf , ex, m

2

CS 421 Practice Final Exam, Part 2 Name:

2. (Object-oriented programming, inheritance, and v-tables. This question is from midterm 2.)

For each of the following Java class definitions, fill in its “v-table” (virtual function table).
Each entry should have the form “<function name> in <class name>”, meaning this table
entry points to the definition of <function name> given in <class name>. The functions in
each table should appear in the correct order, as they would in a v-table for Java or C++.
We have given the first one.

class B {
void f() {}
void g() {}

}

f in B

g in B

class C1 extends B {
void h() {}

}

class C2 extends B {
void g() {}

}

class D extends C1 {
void i() {}
void g() {}

}

3

CS 421 Practice Final Exam, Part 2 Name:

3. (Higher-order functions: know how to use existing higher-order functions map and fold right,
and how to define your own higher-order functions.

The function map2 is a version of map that iterates over two lists (of the same length) simul-
taneously. Here is its definition:

(* This definition assumes |lis1| = |lis2| *)
let rec map2 f lis1 lis2 -> match (lis1,lis2) with

([],[]) -> []
| (h::t, h’::t’) -> f h h’ :: map2 f t t’

(a) Give the (polymorphic) type of map2

(b) Use map2 to define zip, which combines two lists into a list of pairs, e.g.

zip [1;2;4] [true;false;true] = [(1,true);(2,false);(4,true)]

(c) Use map2 to define sumelts, which adds elements of two lists pairwise, e.g.

sumelts [1;2;4] [5;7;3] = [6;9;7]

4. fold right is a higher-order function that encapsulates the notion of “recursion on the tail.”
Its first argument is a function that combines the head of a list with the result of the recursive
call to give the result for this list. Its second argument is the list itself and the third is the
value to return for the empty list. Here is its definition:

let rec fold_right f lis z =
if lis=[] then z else f (hd lis) (fold_right f (tl lis) z)

(a) Give the (polymorphic) type of fold right:

(b) Use fold right to define unzip: (α*β) list → (α list * β list), which is the inverse of
zip, e.g.

unzip [(1,true);(2,false);(4,true)] = ([1;2;4], [true;false;true])

4

CS 421 Practice Final Exam, Part 2 Name:

(c) Use fold right to define compress, which takes two lists, one with booleans and the
other with arbitrary values, and the returns the list consisting of all the elements from
the second list in positions where the first list has true, e.g.

compress [true;false;true] [1;2;4] = [1; 4]

We actually apply fold right only after zipping the the two arguments. Fill in the
blank:

let compress l1 l2 = fold_right ()

(zip l1 l2) []

5. In question 2 from part 1 of the practice problems, you defined functions on a type of data
called a “varmap,” which mapped identifiers to renamed identifiers. It had three functions
(they have slightly different definitions here):

• emptyvarmap: string → int returns zero for all arguments

• update x m returns a new varmap in which x’s value is one greater than in m

• fetch x m returns a string consisting of x concatenated to its value in m.

For example:

let m = update "a" (update "b" (update "a" emptyvarmap));;
fetch "a" m;;
"a2"
fetch "b" m;;
"b1"
fetch "c" m;;
"c0"

In part 1, we used a standard representation of this map as a list of string * int pairs. Here,
you are to use a functional representation. We have given you the definition of emptyvarmap:

type varmap = string -> int

let emptyvarmap = fun s -> 0

let update (s:string) (m:varmap) : varmap =

let fetch (s:string) (m:varmap) : string =

5

CS 421 Practice Final Exam, Part 2 Name:

6. (Type systems: MiniJava; monomorphic and polymorphic type systems for OCaml.)

Here is the explicitly-typed, polymorphic type system from lecture 25:

(Const) Γ ` Int i : int (Var) Γ ` a : Γ(a)
(Γ(a) a type)

(Fun) Γ ` fun a:τ -> e : τ → τ ′

Γ[a:τ] ` e : τ ′
(δ) Γ ` e ⊕ e′ : τ ′′

Γ ` e : τ
Γ ` e′ : τ ′

(App) Γ ` e e′ : τ ′

Γ ` e : τ → τ ′

Γ ` e′ : τ

(True) Γ ` true : bool

(False) Γ ` false : bool

(PolyVar) Γ ` a[τ] : τ
where τ ≤ Γ(a)
(Γ(a) a type scheme)

(Let) Γ ` let a:τ = e in e′ : τ ′

Γ ` e : τ
Γ[a:GENΓ(τ)] ` e′ : τ ′

(a) Write the full proof of this type judgment:

∅ ` let g:((int->alpha)->alpha) = fun f:(int->alpha) -> f 4
in g[(int->int)->int] (fun x:int -> x+1) : int

6

CS 421 Practice Final Exam, Part 2 Name:

(b) The following judgment was given in lecture 25 to illustrate a flaw in the above type
system, when imperative operations are included:

∅ ` let i = fun x -> x
in let fp = ref i in (fp := not; (!fp) 5) : int

This judgment is provable in our type system (even though it shouldn’t be, because it
has a run-time type error). In this problem, you are to give the type-annotated version
of this expression, and then prove the judgment using the polymorphic type system).
Recall the polymorphic types of the imperative operations:

ref : ∀τ.τ → τ ref
! : ∀τ.τ ref → τ
:= : ∀τ.τ ref * τ → unit
; : ∀τ. unit * τ → τ

We have started the explicit type annotation; finish it and fill in the proof (note that,
technically, we should also be adding type instances to the uses of the operators :=, !,
etc., but we are allowing you to omit those):

∅ ` let i:alpha->alpha = fun x:alpha -> x

in let fp: = ref i[]

in (fp[] := not; (!fp[]) 5) : int

7

CS 421 Practice Final Exam, Part 2 Name:

7. (Loop invariants)

In the following questions, we provide you with the pre- and post-conditions of a loop, and
you are to provide (a) a loop invariant, and (b) a termination function. You do not need to
provide that the invariant is an invariant, or that the termination function has the properties
required of a termination function.

(a) x > 0 ∧ y > 0 ∧ d = 0 ∧ r = x {
while (r >= y) { r = r - y; d = d + 1; }

} d = x/y ∧ r = x mod y

Invariant:

Termination function:

(b) Here, a is an array of length n > 0 (indexed from zero):

s = 0 ∧ i = 0 ∧ n > 0 {
while (i != n) { s = s + a[i]; i = i + 1; }

} s = Σn−1
j=0 a[j]

Invariant:

Termination function:

(c) Again, a is an array of length n > 0. The function min(a,i,j) returns the index of the
minimum value in a between indices i and j, inclusive.

i = 0 ∧ n > 0 {
while (i != n-1) { k = min(a,i,n-1); t=a[i]; a[i]=a[k]; a[k]=t; i=i+1; }

} ∀0 ≤ m < n− 1. a[m] ≤ a[m+ 1]

Invariant:

Termination function:

8

