C'S 421 Spring 2012 Practice Final Exam. Part 2

Nay 5, 2012

1. (Compilation of MiniJava)

Below. you ure to give the rules for o try/catch/finally block. which does exception han-
dling in Java. Keep in mind the semsntios of this statement:

e Unlike regular Java, only one catch block 1 allowed here. Ignore code for constructing
exception objects and focus on control How,

e Code within n try block executes nonmally unless an exception is thrown. I this hap-
pens, control jumps to the catch block (if present |, £iaally block [if present), or to the
end of the try block [if neither are present).

e Code inside the catch block is not executed unless an exception ix thrown. Code inside
the £inally block is always execnted regardless if an exception is thrown.

e If an exception is thrown inside o finally block. it = not handled - it is thrown back
up the control stack.

e If an exception is thrown inside a catch block, control goes to the finally block (if
present), then thrown, or simply thrown if the finally block is not present,

Reenll that compilation rules for statements take the following fonn:

S, mo~il, m'

To unplement support for exceptions, we must change the format of statement rules to take
nn additional location, er. which indicates where to jump to if there is an exception thrown
within the statement. (er is o location in the instruction lisf, not n location in the stack.)
Use this new formnt to implement the following questions below:

- - !
S. ve. mo~il,

To get you started, bere = the compilation rule for the try block with no accompanying

catch or £inally blocks:
e | &% wm D §Tun e w]'rw\

try S, cx, m~il, m'
S m', m~il m

[n) Give the compilation rule for the try/finally block with no accompanying catch block.
. - ’,
try S finally Sy, er, m ~ UQ' e j') m
4 . '
’ m] “ MS ‘1 . n

Sf‘ X ’l’\‘ -— v!‘.} 'M

!

CS 421 Practice Final Examn, Part 2 Nawme:

(b} Give the compilation rule for the try/catch block with no accompanying finally block.

try S catch S,,, exr. m -\,9\ @_YJU“‘) n"puo’.d , m

S, w4\ o ;i/ m’

n T ,
gK) ex ,m ‘ i V‘Lg(’m

(¢} Give the compilation rule for the full try/catch/finally block. When executing in
the £inally block. you have to remember whether an exception was thrown, because in
that case. the finally block has to rethrow it (Le. jump to r): assume that a special
stack location th exists for this purpose, that it is initislized 1o 0 just before the block
starts its execution, and that it is not used again after this block’s execution is Anished.)

try S cateh S, #inally 5. ex, m—~ A @ B P w2y
@ dy @[Tunf n'*L LotomH *‘\,1]
C U @[aunp th,ox "‘"'+Ql m''+)

' . '
S/ '+ o W—;.VQIM)

i"‘m".‘—\ / \”‘

T |
§5. e x ,M““""‘ \14 m”

/

L]

CS 421 Practice Final Exum, Part 2 Nawe:

2. (Object-oriented progmamming, inheritance, and vtables. This question is from midterm 2.)

For each of the following Java class definitions, fill in its “v-table” (virtual function table).
Each entry should have the form “<funetion name> in <class name>". mweaning this table
entry points to the definition of <function name> given i <eclass name>. The functions in
cach table should appear 1 the correct order. as they would in a v-table for Java or C+—.
We have given the first one.

claze B {

void £() OO fin B
void g() O} gzin B

}

class C1 extends B { J’- :M B
void h() {J _9 n

! h ow Cf

class C2 extends B { . .
void g() {}

}

5
N
y

class D extends C1 {
void i() {}
void g() {}

}

s 7 %
o 0 T

CS 421 Practice Final Examn, Part 2 Nawme:

3. (Higher-order functions: know how to use cristing higher-order functions map and fold right,
and how to define your own higher-order functions,

The function map2 s a version of map that iterates over two lists (of the saune length) simul-
tanvously. Here s its definition:

(# Thie definition assumes |lisi] = |lis2]| =)
let rec map2 £ lisl 1lis2 -> match (lisl,1ie2) with
aa,.m -»>0
| (he:t, h?::¢%) -> £ h h® :: map2 £ ¢t ¢t*

e Tl s g 2 Y

(b) Use map2 to define zip, which combines two lists into a list of pairs, ¢.g.
zip [1;2;4] ([true;falee;true] = [(1,true);(2,falee); (4, true)]

,Q(t Q\‘) \h\ b = W\\Ul (‘}"\ X 9 = (x,j)\ Lo l by 2
(¢) Use map2 to define sumelte, which adds elements of two lists pairwise, e,

sumelts [1;2;4] [5;7:3] = [6;9;7]

s s U1 627w (e x > ki) Ko\ T2

4. fold right is a higher-order function that encapsulates the notion of “recursion on the teil.”
Its first argument is o function that combines the head of o list with the result of the recursive
call to give the result for this list. Its second argument is the list itself and the third is the
value to return for the empty list. Here is 1ts definition:

let rec fold right f lis z =
if lie=[] then z else f (hd lis) (fold_right f (tl lie) =z)

(a) Give the (polymorphic) type of fold right: .
- ——
(of = \K -) - A {y;(- > Y Y
(b) Use £old right to define unzip: (a*7) list — (o list * J list), which is the inverse of

zip, c.8.

unzip [(L,true);(2,false); (4 ,true)] = ([1;2;4]), [true;false;true])

ontio b, = el ((a'\-) U.\/\Ll),a
QX o L j‘u 1 ’i“zaxu\(’u__ L1\> L Q-S'('\)

CS 421 Practice Final Examn, Part 2 Nawe:

(c) Use fold right to define compress, which takes two lists, one with hooleans and the
other with arbitrary values, and the returns the list consisting of all the elements from
the second list in positions where the first list has true, e.g.

compress [true;false;true] [1;2;4] = [1; 4]

We actually apply fold right ouly after zipping the the two arguments. Fill in the
blank:

let compress 11 12 = fold_right ('5-"\ (Q,L) b" -2 .\%‘k %‘L\M\”

(zip 11 12) 0

5. In question 2 from part 1 of the practice problems, you defined functions on a type of data
called n “varmap,” which mapped identifiers to rennmed identifiers, It had three functions
(they have shightly different definitions here):

e exptyvarmap: string — int returns zero for all arguments
e update x mreturns a new vanunap in which x's value is one greater than inn

e fetch x m returns n string consisting of x coneatenated to its value in m,

For exnmple:

let m = update "a" (update "b" (update "a" eaptyvarmap));;
& fetch "a" m;;

-‘2.

fetch "b" m;;

Ibln

fetch "c" m;;

-CO'

In part 1. we used a standard representation of this map as a list of string * int pairs. Here,
you are to use a functional representation. We have given you the definition of enptyvarmap:

type varmap = string -> int
let emptyvarmap = fun g -> 0

let update (z:string) (m:varpap) : varmap =

fus' =) s fan b0)4} Al s

let fetch (s:string) (m:varmap) : string =

s A (SL}?,.\,J (m 5))

o

s b g

N/

‘)(‘ASM—?- ’fw‘S;’O

M = (f» S W~ S'—*--? 2 ({'\::0)
= > sz %" A (fr c20)s
§“ 9 h‘ ’ FLK jéh]c“ s>0) S
- —?—-ﬁ s-'-a\x ¢="a" e | s O”
feb " = e <G ey A (:,“«'«),)
“« A(;-tf-L ((f“ s> .. & O \)
A (o QA e e @)
'.4"/\(5'-'\-(Ay 2 Al

CS 421 Practice Final Examn, Part 2 Nawme:

6. (Type systems: MimiJava; monemaerphic and polymorphic type systems for OCaml,)

Here is the explicitly-typed, polvmorphic type system from lecture 25:

(Const) I'Elnti:int (Var) I'-a:INa)
(Cla) o type)

(Fun) 'rhmar >e¢:7—1 (8) IF're@®e 1"

Fler|Fe: 7' F-e:r

re-¢:+

-

(App! F=ce':r

Pre:7—1¢

(True) I' = true : bool

r=¢:r
(False) I' = lalse @ bool
(PolyVar) T'kar| : 7 (Let) F-letar=edne : v
where 7 < ['(a) Fe:r
(F(a) o type scheme) Fla:GENp(7)] F o' = ¢
2t g s e £ 1]
[n) Write the full proof of this type judgment: A 3 (‘f“f Pabnl Sl \)

W let g:((int->alpha)->alpha) = fun f:(int->alpha) -> f 4
in gl(int->int)->int] (fun x:int -> x+1) : it

pr o fr(aT2e) = £ 4 (W=el)=d

Ny V«(;:mm.g St e
- 3[(-&-4»3‘)“ &) “j—""%’,
T ¥ o)
[F fa faxe)] L WORV
M) b ot owl
r'[x h'\‘ I-X'.\ak
[X P .y

CS 421 Practice Final Examn, Part 2 Nawme:

(b) The following judgment was given in lecture 25 to illustrate o Haw in the above type
svstem, when imperative operations are included:

B let i = fun x -> x
in let fp = ref i in (fp := not; (!'fp) 5): it

This judgment is provable in our type system (even though it shouldn’™t be, beeanse it
has a Tun-time type error). In this problem, you are to give the type-annotated version
of this expression. and then prove the judgment using the polymorphic type system).
Reeall the polymorphic types of the imperative operations:
ref : Vr.r — 7 ref
'iVrorref o7
=: Yr.r ref * r — unit

prVrounit v — 7

We have started the explicit type annotation; finish 1t and 6ll in the proof (note that,
technically, we shonld also be ndding type instances to the uses of the operators = 1,
cte,, but we are allowing you to omit those):

0+ let i:alpha->alpha-£u)nxalp.ha -> x .
h 1:: ‘Zp[(bal)‘q' = mak) "i':.[a[(—.g\-a..d') v-‘-%fn 6) : int
(pl_{w\l'ox‘*)f LK =¥
X:x§ F Kied
T ;l.v“xj»-ﬁr fre -
| e Lff-v3 (('»f "‘6'
r" .) (, -;F\ -7 (r,-;?"ﬂ
7 [?ifﬂ f?é (‘4(,\ x.d‘aot)

:vf.(@@ ({rf--w')tk
- I" @r‘:’ aak rand

M;wr
|1G"fr((((,,.!—)L)‘“‘I< N)
r' - y\o* b qu}

T gy

Wt

CS 421 Practice Final Examn, Part 2 Nawe:

7. (Loop mvariants)

In the following questions, we provide you with the pre- and post-conditions of a loop, and
you are to provide (a) 4 loop invariant. and (b) a termination funetion. You do not need 1o
provide that the invanant is an invariant, or that the termination function has the properties
required of a termination function.,

() r>0Ayy>0Ad=0Ar=1ux{
while (r>=y) {r=r-y;d=d +1; }
}d=x/y Ar=xrmody

Invariant:)(= Y F a /
Tenuination fuucl'wn (x ’ 7) r)

(L) Here, a is an array of length » > 0 (indexed from zero):

s=0Ai=0AR>0{
while (i '=n) {s=s+ali); i =1+ 1; }
'y “"—)ulj] .

Invariant: Za))

Termination funchon. \ (S, *’) = W~ L(

(c) Again, a is an array of length » > 0. The function mina,i,j) returns the index of the
minimum value in a between indices i and j. inclusive.

i=0An>0{
while (i '= n=1) { k = min(a,i,n=1); t=alil); alil=alk]; alkl=t; i=i+1; }
}0<m<n~1.am|<alm+1]

vt {0 € M < -1 alnl < ‘&["4‘3
A Migm<n, ali-f] So [w)

Termination funchou

(L v k T a) A’L ’

