
CS 421 Spring 2012 Practice Final Exam, Part 1

May 4, 2012

This practice exam contains questions similar to those that will appear on the final exam. There
are several differences:

• Because there is no set time limit on a practice exam, the exam is longer (note that this is
just the first part).

• On the actual exam, many questions will be partially filled in; this is both to reduce the
amount of writing you need to do and to make the exam easier to grade. We have done that
only minimally on the practice exam.

On the other hand, the practice exam offers a good idea of both the areas that will be covered on
the exam and the difficulty level of the questions. Some of the questions also contain comments
describing what you should study; if you can do the problems on the practice exam, you should do
well on the final, but of course you still need to study the class notes, midterms, and homeworks,
since the practice exam does not test everything we covered in class.

1. (Writing recursive functions on lists and trees, and determining their types (by inspection).)

Write a function distance map that takes a pair of integers and a list of integer pairs, and
returns a list of integers which contains the Manhattan distance of each point in the list from
the given point. Note that Manhattan distance between (x1,y1) and (x2,y2) is |x1 − x2| +
|y1− y2|.

# let distance_map ... = ...;;
val distance_map: int * int -> (int * int) list -> int list = <fun>
# distance_map (5,5) [(1,2);(3,4);(5,6);(8,7)];;
- : int list = [7;3;1;5]
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2. (Functions on abstract syntax trees.) Static single assignment form is a representation of
statements in which no variable is assigned to in two different statements. An ordinary
sequence of statements can be transformed into SSA form by renaming variables. For example,
the sequence of assignments on the right calculates the same values as the one on the left:
x = 3;
y = x + 7;
x = y + x;
z = x + 1;

x1 = 3;
y1 = x1 + 7;
x2 = y1 + x1;
z1 = x2 + 1;

So the idea of tansforming to SSA form is just to iterate over the statements, remembering the
current name of each variable, and then change the name each time the variable is redefined
(i.e. appears on the left-hand side of an assignment). Things actually get a little complicated
when there are if statements and loops, but in this problem we will just transform sequences
of assignment statements to SSA form. Specifically, given types

type exp = Int of int | Var of string | Add of exp * ex;
type asgn = Asgn of string * ex

we will define ssa: asgn list→ asgn list that will transform its argument into SSA form. For
example,

let stmts = [Asgn("x", Int 3);
Asgn("y", Add(Var "x", Int 7));
Asgn("x", Add(Var "y", Var "x"));
Asgn("z", Add(Var "x", Int 1))];;

ssa stmts;;
[Asgn ("x1", Int 3);
Asgn ("y1", Add (Var "x1", Int 7));
Asgn ("x2", Add (Var "y1", Var "x1"));
Asgn ("z1", Add (Var "x2", Int 1))]

We will do this in two stages. We actually want to define an auxiliary function

let rec ssa’ (sl:asgn list) (m:varmap) : asgn list =
...

let ssa sl = ssa’ sl emptyvarmap

So we will start by defining the type varmap, which maps variable names to integers, repre-
senting the current version of the variable name.

type varmap = (string * int) list
let emptyvarmap = []

Define the following functions recursively:
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(* update increments the integer associated with x by 1.
If x is not in the map, it is added with integer 1. *)

let rec update (x:string) (m:varmap) : varmap =

(* fetch returns the string consisting of x concatenated with
the integer associated with x in m; if x is not in m,
return x concatenated with "0" *)

let rec fetch (x:string) (m:varmap) : string =

(* rename renames every variable in e with the name obtained from
m (i.e. each variable x becomes fetch x m, which is x concatenated
with an integer) *)

let rec rename (e:exp) (m:varmap) =
match e with

We are now in a position to write the function ssa’. The idea is simply to rewrite the first
assignment in the list according to the map, and then recursively transform the remaining
assignments, after updating the map:

let rec ssa’ (sl:asgn list) (m:varmap) : asgn list =
match sl with

[] -> []
| (Asgn(x,e))::tsl ->
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3. (Lexing using regular expressions and DFAs.)

An XML node — or rather, a simplified version of an XML node — starts with <, then has a
tag, and then zero or more attributes, followed by either > or />. A tag consists of one or more
lower-case letters. An attribute is a single space followed by a tag, an equal sign, and a string
(double quotes containing any characters at all except double quotes). We are assuming that
the spaces at the start of each attribute are the only spaces allowed. For example, here is an
XML node:

<script language="javascript" version="1.0">

Write a regular expression and a DFA for XML nodes.
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4. (Bottom-up parsing, including the mechanics of shift/reduce parsing. Not covered here are
the issues that arise with ambiguity, precedence, and associativity, and how they are handled
by ocamlyacc declarations; you should study those as well.)

Consider this grammar for “postfix notation”:

E -> int | E E + | E E -

This grammar is not ambiguous. Here is a parse tree for the sentence “20 30 40 + -”, with
the nodes labelled in pre-order:

Write out the shift-reduce parse for this sentence:

Action Stack Input
1. 20 30 40 + -

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. Accept E
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5. (This question is from midterm 1.)

Consider these two expression grammars:

G1

A → B | B * A | B / A
B → C | B + C | B - C
C → id | int

G2

A → id | int | A+A | A-A | A*A | A/A

(a) (8 pts) Draw the parse tree for x+y*10 in G1:

(b) (6 pts) What precedences and associativities are enforced by G1, if any?

(c) (6 pts) Provide ocamlyacc precedence declarations for G2 so that the precedence and
associativity of all operators is the same as those enforced by G1. (For tokens, use: Star,
Slash, Plus, Minus, Id of string, and Int of int.)
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6. (Top-down, or recursive-descent, parsing. This includes calculating FIRST and FOLLOW
sets, determining whether a grammar is LL(1), and writing a top-down parser.)

Consider this grammar:

expr -> funcall | varref
varref -> ident | ident . varref
funcall -> ident ( expr) | ident . funcall

(a) Give one reason why this grammar is not LL(1).

(b) This grammar results from the one above by a common transformation:

expr -> funcall | varref
varref -> ident dotvarref
dotvarref -> epsilon | . varref
funcall -> ident dotfuncall
dotfuncall -> ( expr ) | . funcall

What is the name of the transformation we used?
Give one reason why this grammar is still not LL(1)

(c) This is yet another variant on the above grammar:

expr -> varref funcallopt
varref -> ident dotvarref
dotvarref -> epsilon | . varref
funcallopt -> ( expr ) | epsilon

Calculate the FIRST and FOLLOW sets for this grammar:

(d) Is the grammar LL(1)? Explain.
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7. (Understanding evaluation (SOS) rules, including writing out a full evaluation tree for an
expression.)

Here are the evaluation rules for a subset of OCaml (the same as µOCaml from midterm 2),
in three models. (Note that the lazy evaluation rules are identical to the substitution rules
except for App.)

Substitution model

(Const) Int x ⇓ Int x (Fun) Fun(a,e) ⇓ Fun(a,e)

(δ) e op e′ ⇓ v OP v′

e ⇓ v
e′ ⇓ v′

(App) e e′ ⇓ v
e ⇓ Fun(a, e′′)
e′ ⇓ v′

e′′[v′/a] ⇓ v

Environment model

(Const) Int i, ρ ⇓ Int i (Var) a, ρ ⇓ ρ(a)

(δ) e op e′, ρ ⇓ v OP v′

e, ρ ⇓ v
e′, ρ ⇓ v′

(App) e e′, ρ ⇓ v
e, ρ ⇓ <Fun(a, e′′), ρ′ >
e′, ρ ⇓ v′

e′′, ρ′[a 7→ v′] ⇓ v

(Fun) Fun(a,e), ρ ⇓ <Fun(a,e), ρ >

Substitution model, with lazy evaluation

(Const) Int x ⇓` Int x (Fun) Fun(a,e) ⇓` Fun(a,e)

(δ) e op e′ ⇓` v OP v′

e ⇓` v
e′ ⇓` v

′

(App) e e′ ⇓` v
e ⇓` Fun(a, e′′)
e′′[e′/a] ⇓` v

(a) On the next page, write the evaluation tree for the following expression in each of the
three models:

((fun g -> fun x -> x + g x) (fun a -> a+a)) 4
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((fun g -> fun x -> x + g x) (fun a -> a+a)) 4 ⇓ 12

((fun g -> fun x -> x + g x) (fun a -> a+a)) 4, ∅ ⇓ 12

((fun g -> fun x -> x + g x) (fun a -> a+a)) 4 ⇓` 12
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8. (Understanding evaluation (SOS) rules to the extent of being able to write them yourself.)

To add lists, we add three new expressions: [], e :: e′, and a simple version of match:
match e with [] -> e′ | x::y = e′′. In this version of match, e should evaluate to a value
of the form [] or v::v′, where v and v′ are both values. We give the rule for the first two
expressions in each model. There are two rules for match in each model, one for when e
evaluates to an empty list and one for when it evaluates to a non-empty list. Give both rules
in both models:

(Null) [] ⇓ [] (Cons) e :: e′ ⇓ v :: v′

e ⇓ v
e′ ⇓ v′

(MatchNull) match e with [] -> e′ | x::y -> e′′ ⇓ v

(MatchCons) match e with [] -> e′ | x::y -> e′′ ⇓ v

(Null) [], ρ ⇓ [] (Cons) e :: e′, ρ ⇓ v :: v′

e, ρ ⇓ v
e′, ρ ⇓ v′

(MatchNull) match e with [] -> e′ | x::y -> e′′, ρ ⇓ v

(MatchCons) match e with [] -> e′ | x::y -> e′′, ρ ⇓ v
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