C'S 421 Spring 2012 Practice Final Exam. Part |

Nay 4, 2012

This practice exam contains questions similar to those that will appear on the final exnm. There
are several differences:

e Becanse there is no set time limit on n practice exam, the exmm ix longer (note that this s
Just the first part).

e On the actual exnm, many questions will be partially filled in; this is both to reduce the
stount of writing you nead to do and to make the exam casier to grade. We have done that
ouly minimally on the practice exum.

On the other hand. the practice exam offers a good idea o1 both the arcas that will be covered on
the exam and the difficulty level of the questions. Some of the questions also contain comments
describing what you should study: if you can do the problans on the practice exam. you should do
well on the final, but of course you still need to study the class notes, midtenns, and homeworks,

since the practice exam does not test everything we coverad in class.

1. ( Writing recursive functions on lists and trecs. and determining their types (by inspection).)

Write a function distance map that takes a pair of integers and a list of integer pairs, and
returns n list of integers which contains the Manhatfan distance of ench point in the list from
the given point, Note that Manhattan distance between (x1,x1) and (x232) s |r] = 22| +

lwl - »2|.

# let distance map ... = ...;;

val distance_map: int * int -> (int * int) list -> iat list = <fun>
# distance_map (5,5) [(1,2);(3,4);(5,8);(8,7)]);;

- : int list = [7;3;1;5)

b oee M. (x0,90) L =
a me e n Ny ‘-"‘m /
(3 — 7

Loy it = (,,{‘(x-xo)-*owy—ym
- L'\?uo,wd(—t



CS 421 Practice Final Exam, Part 1

Nawe:

2. (Functions on abstract syntar frees.) Static single assignment form is a representation of

statements in which no varinble is assigned to in two different statements.  An ordinary
sequence of statements can be transformed into SSA form by renaming variables. For example,
the sequenee of assignments on the right caleulates the same values as the one on the left:

x - 3; x1 =~ 3;

y=x+T; vyl =x1+7;
x =y +x; x2 = y1 + x1;
z=x+1; zl = x2 4+ 1;

So the wden of tansforming to SSA form is just to iterate over the statements, remembering the
current name of each variable, and then change the name ench time the sarinble is redefined
(1.¢, appenrs on the left-hand side of an assignment ). Things actunlly get o little compliented
when there are if statements and loops, but in this problem we will just transform sequences
of assignment statements to SSA form. Specifically, given types

type exp = Int of int | Var of string | Add of exp * e
type asgn = Asgn of string * oxr

we will define sea: asgn list — asgn list that will transform its argument into SSA form. For
example,

let stmte = [Asgn("x", Int 3);
Asgn("y", Add(Var
Azgn("x", Add(Var
Azgn("z", Add(Var

"x"*, Int
.Y.. Var
"x", Int

7))
nxn)) ;
1))1;;
gsa stete; ;

[Asgn ("x1", Int 3);

Azgn ("y1",
Asgn ("x2",
Asgn ("z1",

Add (Var "x1", Int 7));
Add (Var "y1", Var "x1"));
Add (Var "x2", Int 1))]

We will do this in two stages. We actunlly want to define nn auxiliary function

let rec ssa’ (sl:asgn list) (m:varmap) : asgn list =

let ssa sl = ssa’ sl emptyvarmap

So we will start by defining the type varmap. which maps variable names to integers, repre-
senting the eurrent version of the vanable name.

type varmap = (string * int) list
let emptyvarmap = []

Detine the following functions recursively:



CS 421 Practice Final Examn, Part 1 Nawme:

(* update increments the integer associated with x by 1.
If x ic not in the map, it is added with integer 1. *) ;f1\
let rec update (x:string) (m:varmap) : varmap = y\g‘ﬁtk wm W

Il —= [(+")
| gt —= {J-x than (J,hﬂ\?‘-t e (49) :-'utm x 1

(# fetch returne the string comeisting of x concatenated with
the integer associated with x in m; if x ie not in =,

return x concatenated with “0" %) :w
<\= WA W
let rec fetch (x:string) (m:varmap) : string = W& k

C“_a )gA“O

it = yex o il )

(* rename renames every variable in e witl the name obtained from
m (i.e. each variable x becomes fetch x m, which is x concatenated
with an integer) %)

let rec rename (e:exp) (m:varmap) =
match e with :

T (| = ITX
l P b (dc).)-—-)@l;u (RM Q\a w
! Ve A @0 w\)

We are now i a position to write the function sga’. The idea is simply to rewrite the Hrst
assignment in the list according to the map, and then recursively transforin the remaining

mwsignments. after updating the map:

let rec sma’ (sl:asgn list) (m:varmap) : asge list =
match sl with
a->0
| (Asgn(x,e))::tsl ->

L‘t C':Y'?V\OM e m
o M'zux,&.-:‘k,-nx wA

i B (fen x et )
Cosa T



CS 421 Practice Final Examn, Part 1 Nawme:

3. (Lexing using reqular cxpressions and DFAs.)

An XML node — or rather, a simplified version of an XML node — starts with <, then has a
tag, and then zero or more attnbutes, followed by either > or />, A tag consists of one or more
lower-case letters. An attribute is a single space followed by o tag, an equal sign, and a string
(double quotes containing any characters at all except double quotes). We are assuming that
the spunces at the start of cach nttribute are the only spaces allowed. For exanple, here s an

XML node:
<script language="javascript" version="1.0">
Write o regular expression aud a DFA for XML nodes.
' e
— — +
word = [ -2}
\ " Y AvC1™ !
atlr = word =\ [ \ —)
<! wed ather TS
OV\‘M
! ” | + "

X L

Jb.
S 0=
b \%

¢ >
(A

O=CO=




CS 421 Practice Final Exam, Part 1 Name:

4. (Bottom-up parsing, induding the mechanics of shift freduce parsing. Noi covered here are
the issues thot arise with ambiguily, precedence, and associafivity, and how they are handled
by ocamlyacc dedarations; you should study those as weil)

Consider this grammar for “posthx notation™:
E->int | EE+ |EE-

This graxmmar is not ambiguous. Here 3 a parse tree for the sentence “20 30 40 + =", with
the nodes labelled in pre-order:

ne
E
S = ®
o€ Eo T
\ /\\
PL N AR 70
62 of &%
@30 4%

Write out the shift-reduce parse for this sentence:

Actios Stack Loput

1. Sh 20 30 40 + -

2. RE>=N 20 30 40+~
5. <ha E 20 40+ -
4. QE‘—)'I E 30 Y0~ —
5. Sh E € o+ -
5. Rganx £ E 10 -

7. Sk Ee E + —
.otk E Ei_j -

s. Sk e E o
weeEE- € E - esf

11. Accept E et



CS 421 Practice Final Examn, Part 1 Nawme:

5. (This question is from madterm 1,)
Consider these two expression grammars:
G1

A—=B|B*A|B/A
B-C|B+C|B-C

C —id | it A

(a) (8 pts) Draw the parse tree for x+y#10 in Gl: 7\ \A

G2
Aid|imt | A+Ad AA A4 A/A

l 7', (‘; - A
= ' ) '
) I P\/ \ﬁ |
4 \ \

lOo L y

(b) (6 pts) What precedences and associativitics are enforced by G1. if any?
4, - e v /
)

4 (_.,‘4'- dgssol

)

*, / rgo:-d.s.)¢<

(c) |6 pts) Provide oeamlyace precedence declarntions for G2 so that the precedence and
nssocintivity of all operntors is the same ax those enforced by G1. (For tokens, use: Star,

Slash, Plus, Miaus, Id of string, and Int of int.)

70,9[5' v Sla,h )
Jo Lﬁ‘f @L‘“ &FM



CS 421 Practice Final Examn, Part 1 Nawme:

6. ( Top-down, or reursive-descent, parsing. This includes caleulating FIRST and FOLLOW
scts, determining whether a grammar is LL(1), and writing a top-down parser.)

Consider this grammar:

expr -> funcall | varref
varref => ident | ident . varref
funcall -> ident ( expr) | ident . funcall

(a) Clu oue reason why this t,muumu' s not LL( t .

RS Wi, m’“‘f-’@ s 6 )

(L) This grammar results O the one above by o commmon lluu-forumhun

expr ~-> funcall | varref

varre! -> 1dent dotvarref

dotvarref -> epsilon | . varref
funcall -> ident dotfuncall
dotfuncall -> ( expr ) | . funmcall

. .
What is the name of the transformntion we used? L ?'"+ - ‘F‘a? ! M’g

Give one rcuwu why this grammag is still not LL{IJ -
ﬁ;{ QQ) ’ r = Ve )
Fq(r:s'f(t(.%\ 'F'fﬂ’(v =# ¢

(c) This is yet another tarant on the above grammnr: &
s
expr -> varref funcallopt )730
varref -> ident dotvarref }.r.m.rr.
dotvarref -> epeilon | . varref v«.M"
funcallopt -> ( expr ) | epsilon 9

Calculate the FIRST and FOLLOW sets for this grammar:
FIRsT followo
[6) I 2 3 o |

2 3 t
e b 6 A & ef of) f) wf ) e, )
v @ ¥ A & (,c'ajt (,a{‘) (,f’m (,'-f.)
& ¢ c . o’ ) LI ¢ Qﬁ (,e‘} C,eo‘f,) (,ﬁ'[)
[ 2

2 ( o( ° ( ¢ ("§ e,j»’) Caf) Cl‘f,)
(d) Is the grammar LL{1)? Explain. F“«T( . V‘W‘f \/\ ﬁm(’*‘ﬁ)zlé

FiesT | (o) )n ﬁ)‘-‘-‘“(M)‘Qﬁ
Y

-~
M

~-
w



CS 421 Practice Final Examn, Part 1 Nawe:

7. (Understanding cvaluation (SOS) rules, including writing out a fall cvaluation free for an
ezpression.)
Here are the evaluation rules for a subset of OCaml (the same as pOCaml from midterm 2),

in three modek. (Note that the lazy evaluation rules are identical to the substitution rules
except for App.)
Substitution model

(Const) lut x | Int x (Fun) Funfae) § Funla.e)
(8)eoped YvOP ¢ (App) e e’ L v
elv e § Funfa, ")
e | e o
'[e’fa) v
Environment model
(Coust) It i, p § Int i (Var) a. p § pla)
B)eoped, plovOP v (Appled. plr
e.pdv e. p§ <bFuua, &), ¢ >
dopl “pdt

e plla— ] v

(Fun) Funfee), p § <Funlar). p >

Substitution model, with lnzy evaluation

(Const) Int x Y, Int x (Fum) Funla.e) §, Funla,e)
()eope Yy vOP (App) e ¢ |, v
e e 3¢ Funda, o)
e Yoo e[ fa] Yy v

(a) On the next page. write the evaluation tree for the following expression in each of the
three models:

((fun g => fun x => x + g x) (fun a => ara)) 4



CS 421 Practice Final Examn, Part 1 Nawme:

((fun g -> fun x -> x + g x) (fun a -> ata)) 4 | 12 S&T
(f“ ]"f‘“’““" 7,\4}\, \).*4)\!}{.. X=X+ 6{)“"& 47‘§><

1,“,\ _)"‘f”‘"“”*?"(\ﬂlfﬁ'\}-) v—>X*7

) |

- o - at & \L ~atT 4K )
:E: x = x: (f.. a—atalx J f» V-"x*(‘f““’”ﬂ/
49 49

x-’“"ﬂ) Jj/ ’-2
LR Mt / 4+t U €

(for a—ara)q ¥ & 19
fM.{-@-\a—aq*—«\U’f‘h°‘°"* q\v/:.'

|
| 44,
((fun g => fun x => x + g x) (fun a -> a+a)) 4,012

- Kty * v >
(for g=F= 2=kt 93 (f = =2x) ¢ )< 7 ) SR
LY 6= .fu,. 7_,&‘})“”\(*] » /¢ \U('fv‘j-o‘f'w%*'x*—yx’ ¢>
?jg ‘f,_.—vad-a’ﬁ \|L<-fn.¢\‘>a'tl,6>
(f,\k«*a,(bs {U_ x— Kt 7 x’(, N/ _‘f— x= X+53% P, >

Ld’f‘: ‘1’¢\U'1 3. ,\l)“f“""JOTq463
(oo[;x,-»*{] X +)g x 6 U 4
/S‘ \u, ¢ a+4' sggﬂ}S\j}'&
37t : ;::a‘ﬂ VR

(‘fv > X = x+ ,y\ RETERN w ,f..,\;g-‘;(a-(&.\a\:-mc\\y
J{‘i’); x—a(i.:,{ \I& {w 7..:7(~—-"x+} x
{.w*"(—)\ -fw aa+ta

asata N/

q*% 4«* )4

(:fu- \“Q‘V‘\,\ 4 0 £
,S,w. - atra ) ‘}» a-at &
i+ ¥ ¥

149



CS 421 Practice Final Examn, Part 1 Nawe:

8. (Understanding cvalnation (SOS) rules to the cxtent of being able to write them yourself,)

To add lists, we add three new expressions: [J. ¢ :: ¢, and a simple version of match:
match ¢ with [] = ¢ | z::y = " In this version of match, ¢ should evaluate to a value
of the formn [J or v::¢’. where v and ¢ are both values. We give the rle for the first two
expressions in each model. There are two rules for mateh in each model, one for when ¢

evaluntes to nn cmpty list and one for when it evaluates to o non-empty list. Give both rules
in both modeks:

(Null) ] § ] (Cons)e e oo

el v
L

(MatchNull) match ¢ with [1 <> " | zi:yp > " Yo
e J 1
e’ v

(MatchCons) match ¢ with [1 > ¢ | xi:y > " L v

QJL vV, - Va

e ) v

(Null) 1, p 4 1] (Cons) e e, pluvad

e.pluv
opd

(MatchNull) satch ¢ with [1 => &' | zi:y => ¢/ pl v

e, ¢ J 07
e, e v
N

(MatchCous) matvch ¢ with [] > ¢ | xiiy > " plv
e, p U Vv Ve
e elx=viy=v.]  V
¥ \ -

10






