Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

BNF Grammars

- Start with a set of characters, a,b,c,... - We call these terminals
- Add a set of different characters, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$,
- We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

- BNF rules (aka productions) have form
X ::= y
where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals
- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: 01 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
<Sum> ::=0|1
| <Sum> + <Sum> | ()

BNF Deriviations

- Given rules

$$
\mathbf{X}::=y \mathbf{Z} w \text { and } \mathbf{Z}::=v
$$

we may replace \mathbf{Z} by v to say

$$
\mathbf{X}=>y \mathbf{Z} w=>y v w
$$

- Sequence of such replacements called derivation
- Derivation called right-most if always replace the right-most non-terminal

<Sum> ::=0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

BNF Semantics

- The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol

Regular Grammars

- Subclass of BNF
- Only rules of form <nonterminal>::=<terminal><nonterminal> or <nonterminal>::=<terminal> or <nonterminal>::= ε
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)

Example

- Regular grammar:
<Balanced> ::=
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1 <Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 ' s as 1 's

Extended BNF Grammars

- Alternatives: allow rules of from $\mathrm{X}::=y / z$
- Abbreviates X::= y, X::=z
- Options: X::=y[v]z
- Abbreviates X::=yvz, X::=yz
- Repetition: $\mathrm{X}::=y\{v\}^{*} z$
- Can be eliminated by adding new nonterminal V and rules $X::=y z, X::=\nu Z$, $\mathrm{V}::=v, \mathrm{~V}::=W$

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

Example

- Consider grammar:
<exp> ::= <factor>
| <factor> + <factor>
<factor> ::= <bin>
| <bin> * <exp>
<bin> ::= 0 | 1
- Problem: Build parse tree for $1 * 1+0$ as an <exp>

Example cont.

- 1 * $1+0$: <exp>
<exp> is the start symbol for this parse tree

Example cont.

- $1^{*} 1+0: \begin{gathered}<\exp > \\ \\ \text { <factor> }\end{gathered}$

Use rule: <exp> ::= <factor>

Example cont.

- $1^{*} 1+0: \underset{\text { <bin> }}{\substack{\text { <factor }>\\ \text { <fap }}}$ <exp>

Use rule: <factor> ::= <bin>* <exp>

Example cont.

- $1 * 1+0: \quad$ <exp> $\underset{\substack{\text { <bin> } \\ 1}}{\text { <factor> }}$ <tor> + <factor>

Use rules: <bin> ::= 1 and <exp> ::= <factor> + <factor>

Example cont.

- 1 * $1+0$ \llexp>

Use rule: <factor> ::= <bin>

Example cont.

- 1 * $1+0: \quad$ <exp>

Use rules: <bin> ::= 1|0

Example cont.

- $1^{*} 1+0$: <exp>

Fringe of tree is string generated by grammar

Your Turn: 1 * $0+0$ * 1

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example

- Recall grammar:
<exp> ::= <factor> | <factor> + <factor> <factor> ::= <bin> | <bin> * <exp> <bin> ::= 0 | 1
- type exp = Factor2Exp of factor | Plus of factor * factor
and factor $=$ Bin2Factor of bin | Mult of bin * exp
and bin = Zero | One

Example cont.

- 1 * $1+0: \quad$ <exp>

Example cont.

- Can be represented as

Factor2Exp
(Mult(One,
Plus(Bin2Factor One, Bin2Factor Zero)))

Ambiguous Grammars and Languages

- A BNF grammar is ambiguous if its language contains strings for which there is more than one parse tree
- If all BNF's for a language are ambiguous then the language is inherently ambiguous

Example: Ambiguous Grammar

- $0+1+0$

Example

- What is the result for:

$$
3+4 * 5+6
$$

Example

- What is the result for:

$$
3+4 * 5+6
$$

- Possible answers:
- $41=((3+4) * 5)+6$
- $47=3+(4 *(5+6))$
- $29=(3+(4 * 5))+6=3+((4 * 5)+6)$
- $77=(3+4) *(5+6)$

Example

- What is the value of:

$$
7-5-2
$$

Example

- What is the value of:

$$
7-5-2
$$

Possible answers:

- In Pascal, C++, SML assoc. left

$$
7-5-2=(7-5)-2=0
$$

- In APL, associate to right

$$
7-5-2=7-(5-2)=4
$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity
- Not the only sources of ambiguity

Disambiguating a Grammar

- Given ambiguous grammar G, with start symbol S, find a grammar G^{\prime} with same start symbol, such that language of $\mathrm{G}=$ language of G^{\prime}
- Not always possible
- No algorithm in general

Disambiguating a Grammar

- Idea: Each non-terminal represents all strings having some property
- Identify these properties (often in terms of things that can't happen)
- Use these properties to inductively guarantee every string in language has a unique parse

Steps to Grammar Disambiguation

- Identify the rules and a smallest use that display ambiguity
- Decide which parse to keep; why should others be thrown out?
- What syntactic restrictions on subexpressions are needed to throw out the bad (while keeping the good)?
- Add a new non-terminal and rules to describe this set of restricted subexpressions (called stratifying, or refactoring)
- Replace old rules to use new non-terminals
- Rinse and repeat

Example

- Ambiguous grammar:
<exp> ::= 0 | 1 | <exp> + <exp>
| <exp> * <exp>
- String with more then one parse:

$$
\begin{aligned}
& 0+1+0 \\
& 1 * 1+1
\end{aligned}
$$

- Sourceof ambiuity: associativity and precedence

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity
- Not the only sources of ambiguity

How to Enforce Associativity

- Have at most one recursive call per production
- When two or more recursive calls would be natural leave right-most one for right assoicativity, left-most one for left assoiciativity

Example

- <Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
- Becomes
- <Sum> ::= <Num> | <Num> + <Sum>
- <Num> ::= 0|1|(<Sum>)

Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly).
- Precedence for infix binary operators given in following table
- Needs to be reflected in grammar

Precedence Table - Sample

	Fortan	Pascal	C/C++	Ada	SML
highest	$* *$	$*, /$, div, mod	,++--	$* *$	div, mod, $/$,
	$*, /$,+-	$*, /$, $\%$	$*, /$, mod	,,+- \wedge
	,+-		,+-	,+-	$::$
$10 / 407$					

First Example Again

- In any above language, $3+4$ * $5+6$ $=29$
- In APL, all infix operators have same precedence
- Thus we still don't know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:

$$
\begin{gathered}
\text { <exp> }::=0|1|<\operatorname{exp>}+\text { <exp> } \\
\mid<\operatorname{exp>} *<\operatorname{exp>}
\end{gathered}
$$

- Becomes

$$
\begin{aligned}
\text { <exp> }::= & <\text { mult_exp> } \\
& \mid<\text { exp> }+ \text { <mult_exp> }
\end{aligned}
$$

<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::=0|1

Ocamlyacc Input

- File format: \%\{
<header>
\%\}
<declarations>
\%\%
<rules>
\%\%
<trailer>

Ocamlyacc < header>

- Contains arbitrary Ocaml code
- Typically used to give types and functions needed for the semantic actions of rules and to give specialized error recovery
- May be omitted
- <footer> similar. Possibly used to call parser

Ocamlyacc <declarations>

- \%token symbol ... symbol
- Declare given symbols as tokens
- \%token <type> symbol ... symbol
- Declare given symbols as token constructors, taking an argument of type <type>
- \%start symbol ... symbol
- Declare given symbols as entry points; functions of same names in <grammar>.ml

Ocamlyacc <declarations>

- \%type <type> symbol ... symbol

Specify type of attributes for given symbols. Mandatory for start symbols

- \%left symbol ... symbol
- \%right symbol ... symbol
- \%nonassoc symbol ... symbol

Associate precedence and associativity to given symbols. Same line,same precedence; earlier line, lower precedence (broadest scope)

Ocamlyacc <rules>

- nonterminal : symbol ... symbol \{ semantic_action \}
symbol ... symbol \{ semantic_action \}
- Semantic actions are arbitrary Ocaml expressions
- Must be of same type as declared (or inferred) for nonterminal
- Access semantic attributes (values) of symbols by position: $\$ 1$ for first symbol, $\$ 2$ to second ...

Example - Base types

(* File: expr.ml *)
type expr =
Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of (term * expr)
and term =
Factor_as_Term of factor
| Mult_Term of (factor * term)
| Div_Term of (factor * term)
and factor =
Id_as_Factor of string
| Parenthesized_Expr_as_Factor of expr

Example - Lexer (exprlex.mll)

\{ (*open Exprparse*) \}
let numeric = ['0' - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
| "+" \{Plus_token\}
"-" \{Minus_token\}
"*" \{Times_token\}
"/" \{Divide_token\}
"(" \{Left_parenthesis\}
")" \{Right_parenthesis\}
letter (letter|numeric|"_")* as id \{Id_token id\}
[' ' '\t' '\n'] \{token lexbuf\}
eof $\{\mathrm{EOL}\}$

Example - Parser (exprparse.mly)

\%\{ open Expr
\%\}
\%token <string> Id_token
\%token Left_parenthesis Right_parenthesis
\%token Times_token Divide_token
\%token Plus_token Minus_token
\%token EOL
\%start main
\%type <expr> main
\%\%

Example - Parser (exprparse.mly)

expr:

term
\{ Term_as_Expr \$1 \}
| term Plus_token expr
$\{$ Plus_Expr $(\$ 1, \$ 3)\}$
term Minus_token expr
\{ Minus_Expr (\$1, \$3) \}

Example - Parser (exprparse.mly)

term:
factor
\{ Factor_as_Term \$1 \}
| factor Times_token term
\{ Mult_Term (\$1, \$3) \}
| factor Divide_token term
\{ Div_Term (\$1, \$3) \}

Example - Parser (exprparse.mly)

factor:
Id_token
\{ Id_as_Factor \$1 \}
| Left_parenthesis expr Right_parenthesis \{Parenthesized_Expr_as_Factor \$2 \}
main:
| expr EOL
\{ \$1 \}

Example - Using Parser

\# \#use "expr.ml";;

\# \#use "exprparse.ml";;
\# \#use "exprlex.ml";;
\# let test $\mathrm{s}=$
let lexbuf = Lexing.from_string (s^"\n") in main token lexbuf;;

Example - Using Parser

\# test "a + b",";

- : expr =

Plus_Expr
(Factor_as_Term (Id_as_Factor "a"),
Term_as_Expr (Factor_as_Term (Id_as_Factor "b")))

