Programming Languages and Compilers (CS 421)

2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

10/13/16

Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

Simple Implementation Background

```
type term = Variable of string
              | Const of (string * term list)
let rec subst var name residue term =
   match term with Variable name ->
       if var name = name then residue else term
     | Const (c, tys) ->
       Const (c, List.map (subst var_name residue)
                          tys);;
```


Unification Problem

Given a set of pairs of terms ("equations") $\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$

(the *unification problem*) does there exist a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCAML
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

Unification Algorithm

• Let $S = \{(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)\}$ be a unification problem.

Case S = { }: Unif(S) = Identity function (i.e., no substitution)

• Case $S = \{(s, t)\} \cup S'$: Four main steps

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif({(q_1, r_1), ..., (q_m, r_m)} ∪ S')
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')

Unification Algorithm

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - Let $\varphi = \{x \rightarrow t\}$
 - Let $\psi = \text{Unif}(\varphi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}\ o \ \psi$
 - Note: {x → a} o {y → b} = {y → ({x → a}(b))} o {x → a} if y not in a

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

x,y,z variables, f,g constructors

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- S = {(f(x) = f(g(f(z),y))), (g(y,y) = x)} is nonempty

■ Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = x)

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y)) = x
- Orient: (x = g(y,y))
- Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} =
 Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))}
 by Orient

x,y,z variables, f,g constructors

• Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- {(f(x) = f(g(f(z),y))), (x = g(y,y))} is nonempty

• Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))

• Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$

Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} =
Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)}

x,y,z variables, f,g constructors

```
Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)} = ?
```

- x,y,z variables, f,g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}\$ is non-empty

Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))

Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose:(f(g(y,y)) = f(g(f(z),y))) becomes {(g(y,y) = g(f(z),y))}
- Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} =
 Unify {(g(y,y) = g(f(z),y))} o {x→ g(y,y)}

- x,y,z variables, f,g constructors
- $\{(g(y,y) = g(f(z),y))\}\$ is non-empty

Unify {(g(y,y) = g(f(z),y))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = g(f(z),y))

Unify {(g(y,y) = g(f(z),y))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose: (g(y,y)) = g(f(z),y)) becomes {(y = f(z)); (y = y)}

■ Unify $\{(g(y,y) = g(f(z),y))\}\ o \{x \rightarrow g(y,y)\} =$ Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\}$

x,y,z variables, f,g constructors

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- {(y = f(z)); (y = y)} o {x→ g(y,y) is nonempty
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Eliminate y with $\{y \rightarrow f(z)\}$

```
    Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} =
        Unify {(f(z) = f(z))}
        o {y → f(z)} o {x→ g(y,y)}=
        Unify {(f(z) = f(z))}
        o {y → f(z); x→ g(f(z), f(z))}
```

x,y,z variables, f,g constructors

```
Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?
```

- x,y,z variables, f,g constructors
- $\{(f(z) = f(z))\}$ is non-empty

Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))

Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} =
 Unify {} o {y → f(z); x→ g(f(z), f(z))}

x,y,z variables, f,g constructors

■ Unify {} o { $y \rightarrow f(z)$; $x \rightarrow g(f(z), f(z))$ } = ?

- x,y,z variables, f,g constructors
- {} is empty
- Unify {} = identity function
- Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = {y \rightarrow f(z); x \rightarrow g(f(z), f(z))}

Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = {y → f(z); x→ g(f(z), f(z))}

$$f(x) = f(g(f(z), y))$$

$$\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

$$g(y, y) = x$$

$$\rightarrow g(f(z),f(z)) = g(f(z), f(z))$$

Example of Failure: Decompose

- Unify $\{(f(x,g(y)) = f(h(y),x))\}$
- Decompose: (f(x,g(y)) = f(h(y),x))
- \blacksquare = Unify {(x = h(y)), (g(y) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(y)), (x = g(y))}
- Eliminate: (x = h(y))
- Unify $\{(h(y) = g(y))\}$ o $\{x \rightarrow h(y)\}$
- No rule to apply! Decompose fails!

4

Example of Failure: Occurs Check

- Unify $\{(f(x,g(x)) = f(h(x),x))\}$
- Decompose: (f(x,g(x)) = f(h(x),x))
- \blacksquare = Unify {(x = h(x)), (g(x) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(x)), (x = g(x))}
- No rules apply.

Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis

Symbol Table

Translate

Intermediate

Representation

Optimize

Optimized IR

Instruction

Selection

Unoptimized Machine-

Specific Assembly Language

Optimize

Optimized Machine-Specific

Assembly Language

Emit code

Assembly Language

Assembler

Relocatable Object Code

Linker

Machine Code

Modified from "Modern Compiler Implementation in ML", by Andrew Appel

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Syntax of English Language

Pattern 1

Subject	Verb
David	sings
The dog	barked
Susan	yawned

Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

Elements of Syntax

- Character set previously always ASCII, now often 64 character sets
- Keywords usually reserved
- Special constants cannot be assigned to
- Identifiers can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

Expressions

```
if ... then begin ...; ... end else begin ...; ... end
```

Type expressions

```
typexpr<sub>1</sub> -> typexpr<sub>2</sub>
```

Declarations (in functional languages)

```
let pattern_1 = expr_1 in expr
```

Statements (in imperative languages)

$$a = b + c$$

Subprograms

```
let pattern₁ = let rec inner = ... in expr
```


Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
 - Specification Technique: Regular Expressions
 - Parsing: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

Formal Language Descriptions

 Regular expressions, regular grammars, finite state automata

 Context-free grammars, BNF grammars, syntax diagrams

 Whole family more of grammars and automata – covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

10/13/16