
9/20/16 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/20/16 2

Terms

n  A function is in Direct Style when it returns its
result back to the caller.

n  A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

n  A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

n  Instead of returning the result to the caller, we
pass it forward to another function.

9/20/16 3

Terminology

n  Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
n  if (x>3) then x + 2 else x - 4
n  let x = 5 in x + 4

n  Tail Call: A function call that occurs in
tail position
n  if (h x) then f x else (x + g x)

9/20/16 4

Terminology

n  Available: A function call that can be
executed by the current expression

n  The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n  if (h x) then f x else (x + g x)
n  if (h x) then (fun x -> f x) else (g (x + x))

Not available

9/20/16 5

CPS Transformation

n  Step 1: Add continuation argument to any function
definition:
n  let f arg = e ⇒ let f arg k = e
n  Idea: Every function takes an extra parameter

saying where the result goes

n  Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:
n  return a ⇒ k a
n  Assuming a is a constant or variable.
n  “Simple” = “No available function calls.”

9/20/16 6

CPS Transformation

n  Step 3: Pass the current continuation to every
function call in tail position
n  return f arg ⇒ f arg k
n  The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

n  Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)
n  return op (f arg) ⇒ f arg (fun r -> k(op r))
n  op represents a primitive operation

n  return f(g arg) ⇒ g arg (fun r-> f r k)

9/20/16 7

9/20/16 8

Example

Before:
let rec add_list lst =
match lst with
 [] -> 0
| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =
 (* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k
 (* rule 3 *)
| x :: xs -> add_listk xs
 (fun r -> k ((+) x r));;
 (* rule 4 *)

CPS for Higher Order Functions

n  In CPS, every procedure / function takes a
continuation to receive its result

n  Procedures passed as arguments take
continuations

n  Procedures returned as results take
continuations

n  CPS version of higher-order functions must
expect input procedures to take
continuations

9/20/16 9

9/20/16 10

Variants - Syntax (slightly simplified)

n  type name = C1 [of ty1] | . . . | Cn [of tyn]
n  Introduce a type called name
n  (fun x -> Ci x) : ty1 -> name
n  Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
n  Constructors are the basis of almost all

pattern matching

9/20/16 11

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;

order by order of input

9/20/16 12

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
type weekday =
 Monday
 | Tuesday
 | Wednesday
 | Thursday
 | Friday
 | Saturday
 | Sunday

9/20/16 13

Functions over Enumerations

let day_after day = match day with
 Monday -> Tuesday
 | Tuesday -> Wednesday
 | Wednesday -> Thursday
 | Thursday -> Friday
 | Friday -> Saturday
 | Saturday -> Sunday
 | Sunday -> Monday;;
 val day_after : weekday -> weekday = <fun>

9/20/16 14

Functions over Enumerations

let rec days_later n day =
 match n with 0 -> day
 | _ -> if n > 0
 then day_after (days_later (n - 1) day)
 else days_later (n + 7) day;;
val days_later : int -> weekday -> weekday

= <fun>

9/20/16 15

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday |
Wednesday

 | Thursday | Friday | Saturday | Sunday;;
n  Write function is_weekend : weekday -> bool
let is_weekend day =

9/20/16 16

Problem:

type weekday = Monday | Tuesday |
Wednesday

 | Thursday | Friday | Saturday | Sunday;;
n  Write function is_weekend : weekday -> bool
let is_weekend day =
 match day with Saturday -> true
 | Sunday -> true
 | _ -> false

9/20/16 17

9/20/16 18

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp
 | SndOp

9/20/16 19

Disjoint Union Types

n  Disjoint union of types, with some possibly
occurring more than once

n  We can also add in some new singleton
elements

ty1 ty2 ty1

9/20/16 20

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>

Problem

n  Create a type to represent the currencies for
US, UK, Europe and Japan

9/20/16 21

Problem

n  Create a type to represent the currencies for
US, UK, Europe and Japan

type currency =
 Dollar of int
 | Pound of int
 | Euro of int
 | Yen of int

9/20/16 22

9/20/16 23

Example Disjoint Union Type

type const =
 BoolConst of bool
 | IntConst of int
 | FloatConst of float
 | StringConst of string
 | NilConst
 | UnitConst

9/20/16 24

Example Disjoint Union Type

type const = BoolConst of bool
 | IntConst of int | FloatConst of float
 | StringConst of string | NilConst
 | UnitConst

n  How to represent 7 as a const?
n  Answer: IntConst 7

9/20/16 25

Polymorphism in Variants

n  The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n  Used to encode partial functions
n  Often can replace the raising of an exception

9/20/16 26

Functions producing option

let rec first p list =
 match list with [] -> None
 | (x::xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

9/20/16 27

Functions over option

let result_ok r =

 match r with None -> false

 | Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

Problem

n  Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

9/20/16 28

Problem

n  Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

n  let hd list =
 match list with [] -> None
 | (x::xs) -> Some x
n  let tl list =
 match list with [] -> None
 | (x::xs) -> Some xs
9/20/16 29

9/20/16 30

Mapping over Variants

let optionMap f opt =
 match opt with None -> None
 | Some x -> Some (f x);;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>
optionMap
 (fun x -> x - 2)
 (first (fun x -> x > 3) [1;3;4;2;5]);;
-  : int option = Some 2

9/20/16 31

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option ->

'b = <fun>
let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>

9/20/16 32

Recursive Types

n  The type being defined may be a component
of itself

ty ty’ ty

9/20/16 33

Recursive Data Types

type exp =
 VarExp of string
 | ConstExp of const
 | MonOpAppExp of mon_op * exp
 | BinOpAppExp of bin_op * exp * exp
 | IfExp of exp* exp * exp
 | AppExp of exp * exp
 | FunExp of string * exp

9/20/16 34

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | …
type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | …

n  How to represent 6 as an exp?

9/20/16 35

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | …
type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | …

n  How to represent 6 as an exp?
n  Answer: ConstExp (IntConst 6)

9/20/16 36

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | …
type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | …

n  How to represent (6, 3) as an exp?

9/20/16 37

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | …
type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | …

n  How to represent (6, 3) as an exp?
n  BinOpAppExp (CommaOp, ConstExp (IntConst 6),
 ConstExp (IntConst 3))

9/20/16 38

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
 | EqOp | CommaOp | ConsOp | …
type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const
 | BinOpAppExp of bin_op * exp * exp | …
n  How to represent [(6, 3)] as an exp?
n  BinOpAppExp (ConsOp, BinOpAppExp (CommaOp,

ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

Your turn now

Try Problem 1 on MP3

9/20/16 39

9/20/16 40

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree *

int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of

(int_Bin_Tree * int_Bin_Tree)

9/20/16 41

Recursive Data Type Values

let bin_tree =
 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node

(Leaf 3, Leaf 6), Leaf (-7))

9/20/16 42

Recursive Data Type Values

 bin_tree = Node

 Node Leaf (-7)

Leaf 3 Leaf 6

9/20/16 43

Recursive Functions

let rec first_leaf_value tree =
 match tree with (Leaf n) -> n
 | Node (left_tree, right_tree) ->
 first_leaf_value left_tree;;
val first_leaf_value : int_Bin_Tree -> int =

<fun>
let left = first_leaf_value bin_tree;;
val left : int = 3

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n  Write sum_tree : int_Bin_Tree -> int
n  Adds all ints in tree
let rec sum_tree t =

9/20/16 44

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n  Write sum_tree : int_Bin_Tree -> int
n  Adds all ints in tree
let rec sum_tree t =
 match t with Leaf n -> n
 | Node(t1,t2) -> sum_tree t1 + sum_tree t2

9/20/16 45

9/20/16 46

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with (Leaf n) -> Leaf (f n)
 | Node (left_tree, right_tree) ->
 Node (ibtreeMap f left_tree,
 ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

9/20/16 47

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf

8), Leaf (-5))

9/20/16 48

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with Leaf n -> leafFun n
 | Node (left_tree, right_tree) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun left_tree)
 (ibtreeFoldRight leafFun nodeFun right_tree);;
val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->

int_Bin_Tree -> 'a = <fun>

9/20/16 49

Folding over Recursive Types

let tree_sum =
 ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

