Programming Languages and
Compilers (CS 421)

»

~
Elsa L Gunter
2112 SC, UluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/15/16

i Functions

let plus_two n=n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

-:int =19

let plus_two = funn->n+ 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

-:int=16

|First definition syntactic sugar for second|

9/15/16 2

i Closure for plus_x

= When plus_x was defined, had environment:
Pplus x = {.,x—12,.}
= Recall: let plus_ xy =y + x
is really let plus_x = funy ->y + x
= Closure for funy ->vy + x:
<y—=>y+X Pplus_x ~
= Environment just after plus_x defined:

{plus_x = <y =y +x, Pplus_x >} + Pplus_x

9/15/16

i Recall: let plus_x = fun x =>y + x

let x = 12

let plus_x =funy=>y+x

letx=7

9/15/16 4

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint *int = (3, 3)

double "hi";;

- : string * string = ("hi", "hi")

9/15/16

* Save the Environment!

= A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:
< (vi,..,vn) = exp, p >
= Where p is the environment in effect when
the function is defined (for a simple function)

9/15/16 6

iCIosure for plus_pair

u Assume ps oo Was the environment just
before plus_pair defined

= Closure for fun (n,m) -> n + m:
<(n,m) =n+m, Pplus_pair™
= Environment just after plus_pair defined:
{plus_pair — <(n,m) = n +m, ppjys pair >+

* Pplus_pair

9/15/16 7

i Functions with more than one argument

let add_threexyz=x+y + z;;
val add_three : int -> int -> int -> int = <fun>
lett = add_three 6 3 2;;
valt:int=11
let add_three =
funx-> (funy-> (funz->x+vy+ 2));;
val add_three : int -> int -> int -> int = <fun>

| Again, first syntactic sugar for second |

9/15/16 8

i Partial application of functions

llet add_three xy z = x +y + z;;

let h = add_three 5 4;;
val h :int -> int = <fun>
#h3;;

-int =12

#h7;;

-:1int=16

9/15/16 9

i Curried vs Uncurried

= Recall

val add_three : int -> int -> int -> int = <fun>
= How does it differ from

let add_triple (u,v,w) =u+ v+ w;;

val add_triple : int * int * int -> int = <fun>

» add_three is curried;
» add_triple is uncurried

9/15/16 10

i Curried vs Uncurried

add_triple (6,3,2);;
-rint=11
add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NANNNNNNANNN
This function is applied to too many arguments,
maybe you forgot a *;'
fun x -> add_triple (5,4,x);;
:int -> int = <fun>

9/15/16 11

i Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#94;;

-:int =10

thrice (fun s -> "Hi! " ~ s) "Good-bye!";;
- 1 string = "Hi! Hi! Hi! Good-bye!"

9/15/16 12

i Higher Order Functions

= A function is higher-order if it takes a
function as an argument or returns one as
a result

= Example:

let compose f g = fun x -> f (g X);;

val compose : ('a -> 'b) -> (‘'c->"'a) -> 'c ->
'b = <fun>

= Thetype ('a->'b)->('c->'a)->'c->'b
is a higher order type because of
(a->'b)and (‘c->'a)and ->'c->'b

9/15/16 13

Thrice

let thrice f x = f (f (f x));;
val thrice : ('fa->'a) -> 'a -> 'a = <fun>
| « How do you write thrice with compose? |

9/15/16 14

Thrice

let thrice f x = f (f (f x));;

val thrice : (‘a->'a) -> 'a-> 'a = <fun>
| « How do you write thrice with compose? |
let thrice f = compose f (compose f f);;
val thrice : (‘a -> 'a) -> 'a -> 'a = <fun>
= Is this the only way?

9/15/16 15

i Partial Application

#(+)5

-rint -> int -> int = <fun>

#(+)23;;

-1int=5

let plus_two = (+) 2;;

val plus_two : int -> int = <fun>

plus_two 7;;

-:int=9

= Patial application also called sectioning

9/15/16 16

i Partial Application and “Unknown Types”

|- Recall compose plus_two: |
let f1 = compose plus_two;;
valfl:('_a->int) ->"'_a->int = <fun>

| « Compare to lambda lifted version: |
let f2 = fun g -> compose plus_two g;;
val f2 : ("a -> int) -> 'a -> int = <fun>

| = What is the difference? |

9/15/16 17

Partial Application and “Unknown Types”

= ‘_a can only be instantiated once for an expressionl

f1 plus_two;;
- rint -> int = <fun>
f1 List.length;;
Characters 3-14:

f1 List.length;;

ANNANNNNNNANAN

This expression has type 'a list -> int but is here used
with type int -> int

9/15/16 18

i Partial Application and “Unknown Types”

|- ‘a can be repeatedly instantiated |

f2 plus_two;;
- rint -> int = <fun>
f2 List.length;;

1

-: " alist -> int = <fun>

9/15/16 19

i Lambda Lifting

= You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
#letadd2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

9/15/16 20

i Lambda Lifting

thrice add_two 5;;

-:int=11

thrice add2 5;;
test

test

test

-int=11

= Lambda lifting delayed the evaluation of the
argument to (+) until the second argument
was supplied

9/15/16 21

i Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update p with x v: {x =V} +p

= Update: p,+ p, has all the bindings in p; and
all those in p, that are not rebound in p,

x—=2,y—3,a~-"hi"} +{y - 100, b — 6}
={x—>2,y—>3,a—"hi", b6}

9/15/16 22

i Evaluating expressions

= Evaluation uses an environment p
= A constant evaluates to itself
= To evaluate an variable, look it up in p (p(Vv))

= To evaluate uses of +, -, etc, eval args,
then do operation

= Function expression evaluates to its closure

= To evaluate a local dec: let x = el in e2
= Eval el to v, eval e2 using {x — v} + p

9/15/16 23

i Evaluation of if-then-else

= Assume current environment p

= Evaluate if e, then e, else e; by
= First evaluate e, to boolean v,

= If v, is true, evaluate e, to v,; v, value of whole
expression

= Do not evaluate e;

= If v, is false, evaluate e; to v;; v; value of whole
expression

= Do not evaluate e,

9/15/16 2

i Eval of App e,e, with Closures in Ocaml

1. In environment q, evaluate right term e, to
values (vy,...,v,,)

2. In environment o, evaluate left term e, to
closure, ¢ = <(xy,...,X,) — b, o>

3. Match (xy,...,x,) variables in (first)
argument with value (vy,...,v,)

4. Update environment o1 to
0" ={Xy = Vi, X, 2V 1+ O

s. Evaluate body b in environment o’

9/15/16 25

i Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/15/16 26

‘ Structural Recursion : List Example

let rec length list = match list
with [1-> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list xs

9/15/16 27

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse on
components

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been traversed
to start building answer

9/15/16 28

’ Forward Recursion: Examples

let rec double_up list =
match list
with [1->[]
| (x::xs)->(x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with []-> []
| (x::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> "a list = <fun>

9/15/16 29

‘ Question

= How do you write length with forward
recursion?

let rec length | =

9/15/16 30

Elsa L. Gunter
0

Elsa L. Gunter
1

Elsa L. Gunter
1

Elsa L. Gunter
1

Elsa L. Gunter
0

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->
| (@:: bs)->

9/15/16

31

i Question

= How do you write length with forward
recursion?

let rec length | =
match | with [] ->

| (@::bs)-> length bs

9/15/16

32

‘ Question

= How do you write length with forward
recursion?

let rec length | =
match [with []-> 0
| (@ ::bs)->1+ length bs

9/15/16

33

*

Your turn now

Try Problem 2 on ML2

9/15/16

34

’ An Important Optimization

= When a function call is made,

Normal the return address needs to be
call saved to the stack so we know

h call is finished

does (a tail call)?

9/15/16

to where to return when the

L g = What if fcalls gand g calls h,
i but calling A is the last thing g

35

‘ An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know

<' h call is finished

>

does (a tail call)?

to where to return when the

f = What if fcalls g and g calls h,
but calling A is the last thing g

= Then h can return directly to

instead of g

9/15/16

36

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/15/16 37

i Example of Tail Recursion

let rec prod | =
match | with []-> 1
| (x:: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
let prod list =
let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
in prod_aux list 1;;
val prod : int list -> int = <fun>

9/15/16 38

$ Question

= How do you write length with tail recursion?
let length | =

9/15/16 39

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =

9/15/16 40

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] ->
| (@ ::bs)->

9/15/16 4

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (@ ::bs)->

9/15/16 42

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux

9/15/16 43

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (@ :: bs) -> length_aux bs

9/15/16 44

i Question

= How do you write length with tail recursion?
let length | =
let rec length_aux list n =
match list with [] -> n
| (a::bs)->length_aux bs (n + 1)

9/15/16 45

i Question

= How do you write length with tail recursion?
let length | =

let rec length_aux list n =

match list with [] -> n

| (@ :: bs) -> length_aux bs (n + 1)
in length_aux | 0

9/15/16 46

4

Your turn now

Try Problem 4 on MP2

9/15/16 47

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]->]]
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- rintlist = [4; 6; 8]

9/15/16 48

iMapping Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh) :: (map ft);;
val map : ("a-> 'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-:intlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
rintlist =[12; 7; 4; 2; 1; 0; 0]

9/15/16 49

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion
let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- rintlist = [4; 6; 8]
= Same function, but no rec

9/15/16 50

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48
= Computes (2 * (4 * (6 * 1)))

9/15/16 51

Folding Functions over Lists

| How are the following functions similar? |

let rec sumlist list = match list with
[1->0] x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let rec prodlist list = match list with
[]1->1]x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-:int=24

9/15/16 52

Iterating over lists

let rec fold_right f list b =
match list
with[]-> b
| (x::xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->'alist->'b->'b =
<fun>
fold_right
(fun's -> fun () -> print_string s)
["hi"; "there"]
0
therehi- : unit = ()

9/15/16 53

i Folding Recursion

= multList folds to the right
= Same as:
let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/15/16 54

iEncoding Recursion with Fold

let rec append list1 list2 = match listl with
[1->Ilist2 | x::xs -> x :: append xs list2;;
val ap[?énd :'a list -> "a list —>§§ list = <fun>

| Base Case | |Operation || Recursive Call |

let append listl listZ =
fold_right (fun x y -> x :7y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-:intlist = [1; 2; 3; 4; 5; 6]

9/15/16 55

iQuestion

let rec length | =
match | with []-> 0
| (@::bs)->1+ length bs

How do you write length with fold_right, but
no explicit recursion?

9/15/16 56

i Question

let rec length | =
match | with []-> 0
| (@ ::bs)->1+ length bs

= |How do you write length with fold_right, but
no explicit recursion?

let length list =
List.fold_right (fun x -> funn -> n + 1) list 0

9/15/16 57

i Map from Fold

let map f list =

fold_right (fun x -> funy -> f x :: y) list
[1

valmap : ('a->'b) -> 'alist -> 'b list =
<fun>

map ((+)1) [1;2;3];;

- rintlist = [2; 3; 4]

= Can you write fold_right (or fold_left) with
just map? How, or why not?

9/15/16 58

Iterating over lists

let rec fold_left f a list =
match list
with []-> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"a)->'a->'blist->'a=
<fun>
fold_left
(fun () -> print_string)
0
[llhill; "there"];;
hithere- : unit = ()

9/15/16 59

* Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux | acc =
match | with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list-1;;

val prod : int list=> int = <fun>

IInit Acc Value | IRecursive Call | IOperation |

let prod%
List.fold_left (fun acc y -> acc * y) 1 list;;

val prod: int list -> int = <fun>
prod [4;5;6];;
- 1int =120

9/15/16 60

i Question

let length | =

let rec length_aux list n =

match list with []-> n

| (@:: bs) -> length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

9/15/16 61

iQuestion

let length | =

let rec length_aux list n =

match list with [] -> n

| (@ ::bs)->length_aux bs (n + 1)
in length_aux | 0

= How do you write length with fold_left, but
no explicit recursion?

let length list =
List.fold_left (fun n -> fun x ->n + 1) 0 list

9/15/16

62

i Folding

let rec fold_left f a list = match list
with []1-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a=
<fun>
fold_left f @ [xy; Xy;...;%,] = f(...(F (f @ x1) X5)...)X,

let rec fold_right f list b = match list
with []1-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ("a->'b->'b)->'"alist->'b->"b =
<fun>

|fold_right f [Xg; Xg5..%,] b = £ x,(F %, (..(F X, b)...)) |

9/15/16 63

i Recall

let rec poor_rev list = match list
with [] -> []
| (x::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

What is its running time?

9/15/16 64

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

» List example:

let rec poor_rev list = match list
with []-> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/15/16 65

* Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [1;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/15/16

66

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @ [2]) @ [1] =
s ([J@BD)@2) @[1]) =

« (Bl@2) @[1] =

= Bu(l@2)) @[1]=

= [32]@[1] =

» 3 ([2]1@[1]) =

=3 ((l@[]) =132 1]

9/15/16 67

i Comparison

rev[1,2,3] =

rev_aux [1,2,3][] =
rev_aux [2,3] [1] =

rev_aux [3] [2,1] =

rev_aux []11[3,2,1] =[3,2,1]

9/15/16 68

‘ Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x:1) //combop
[] //accumulator cell
list

9/15/16 69

‘ Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/15/16 70

’ Continuation Passing Style

= A programming technique for all forms
of “non-local” control flow:
= hon-local jumps
= exceptions
= general conversion of non-tail calls to tail
calls

= Essentially it’ s a higher-order function
version of GOTO

9/15/16 71

‘ Continuations

= Idea: Use functions to represent the control
flow of a program

= Method: Each procedure takes a function as
an argument to which to pass its result;
outer procedure “returns” no result

= Function receiving the result called a
continuation

= Continuation acts as “accumulator” for work
still to be done

9/15/16 72

i Example of Tail Recursion

letrecapp flx =
match fl with [] -> x
| (f:: rem_fs) ->|f (app rem_fs x);;l
val app : (‘a -> 'a) list ->\a -> 'a = <fun>
letapp fs x =
let rec app_aux fl acc=
match fl with [] -> acc
| (F:: rem_fs) -> app_aux rem_
|(fun z -> acc (f 2)) |
in app_aux fs (funy ->y) X;;
val app : (‘a->'a) list -> 'a -> 'a = <fun>

9/15/16 73

iContinuation Passing Style

= Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

9/15/16 74

$ Example of Tail Recursion & CSP

let app fs x =
let rec app_aux fl acc=
match fl with [] -> acc
| (f:: rem_fs) -> app_aux rem_fs
(fun z -> acc (f z))
in app_aux fs (funy ->y) x;;
val app : (‘a -> 'a) list -> 'a -> 'a = <fun>
let rec appk fl x k =
match fl with []-> k x
| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f 2));;
val appk : ('a->'a) list->'a->(la->'b)->'b

9/15/16 75

i Continuation Passing Style

= A compilation technique to implement non-
local control flow, especially useful in
interpreters.

= A formalization of non-local control flow in
denotational semantics

9/15/16 76

i Terms

= A function is in Direct Style when it returns
its result back to the caller.

= A Tail Call occurs when a function returns
the result of another function call without
any more computations (eg tail recursion)

= A function is in Continuation Passing Style
when it passes its result to another function.

= Instead of returning the result to the caller,
we pass it forward to another function.

9/15/16 77

Example

= Simple reporting continuation: |

let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

= Simple function using a continuation:l

letpluskabk =k (a+b)

val plusk : int -> int -> (int -> "a) -> "a = <fun>
plusk 20 22 report;;

42

-runit=()

9/15/16 78

i Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk x y k = k(x + y);;

val subk : int -> int -> (int -> 'a) -> 'a = <fun>

#letegkxy k = k(x =vy);;

val egk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

9/15/16 79

i Nesting Continuations

letadd_threexyz=x+y +z;
val add_three : int -> int -> int -> int = <fun>
let add_threexyz=letp=x+yin p+z;
val add_three : int -> int -> int -> int = <fun>
let add_three_k xy zk =
addk x y|(fun p -> addk p z[K);;
val add_three_k : int -> int -> int -> (int -> 'a)
->'a = <fun>

9/15/16 80

