Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/1/16

+

Your turn now

Try steps 1 - 3 from
WAO-practice

Functions

+

let plus_twon=n+ 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- int = 19

let plus_two = n->n+ 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- int = 16

| First definition syntactic sugar for second|

9/1/16

i Using a nameless function

(fun x ->x*3) 5;; (* An application *)

- int =15

#((funy->y +.2.0), funz->2z*3));;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

9/1/16

i Values fixed at declaration time

#letx = 12:; >
val X :int =12

let plus_x yf=\y + X;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

9/1/16

i Values fixed at declaration time

#letx =12;;

val X : int = 12

letplus Xy =vy + x;;

val plus_x : int -> int = <fun>
plus_x 3;;

-:int =15

9/1/16

* Values fixed at declaration time

#letx =7;; (* New declaration, not an
update *)
val x : int=7

plus_x 3;;

What is the result this time?

9/1/16

i Values fixed at declaration time

#letx =7;; (* New declaration, nat an

update *)
valx :int=7

% plus_xJ3;;

| What is the result this time?

9/1/16

i Values fixed at declaration time

#letx =7;; (* New declaration, not an
update *)
val x : int=7

plus_x 3;;
-:int =15

9/1/16

i Question

s Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Answer: a closure

9/1/16 10

i Save the Environment!

= A closureis a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f — < (vl,...,vn) — exp, ps >

= Where ps is the environment in effect when f
is defined (if f is a simple function)

9/1/16 11

i Closure for plus_x

= When plus_x was defined, had environment:

p|3|US_X = {I X — 12, }
= Recall: let plus_xy =y + X

s really let plus_x =funy->y + X
s Closure for funy ->y + x:

<y —=VY + X, pplUS_X >
= Environment just after plus_x defined:

{plUS_X — <Yy =Y + X, pplus_x >} + pp|US_X

9/1/16

12

Now it's your turn

You should be able to do remainder
of WAO-practice

9/1/16 13

i Match Expressions

let triple_to_pair triple =

match triple Each clause: pattern on
left, expression on right

with (0, X, y) -> (X, V)

*Each x, y has scope of
(X, 0,¥) -> (X, ¥) only its clause

(X, ¥,) ->(x,y);; |Use first matching clause

val triple_to_pair : int * int * int -> int * int =
<fun>

9/1/16 14

i Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120
(* rec is needed for recursive function
declarations *)

9/1/16

15

i Recursion Example

Compute n? recursively using:
nN2=(2*n-1)+ (n-1)>2

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)

n->(2*n-1) (* recursive case *)

+ nthsqg (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>

nthsq 3;;

- 1int=9

Structure of recursion similar to inductive proof

9/1/16 16

i Recursion and Induction

let rec nthsg n = match n with 0 -> 0
In->(2*n-1)+nthsg(n-1) ;;

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= If or match must contain base case
= Failure of these may cause failure of termination

9/1/16 17

i Lists

= First example of a recursive datatype (aka
algebraic datatype)

= Unlike tuples, lists are homogeneous in
type (all elements same type)

9/1/16 18

i Lists

= List can take one of two forms:
« Empty list, written []
= Non-empty list, written X :: Xs

= X iS head element, xs is tail list, :: called
“cons”

= Syntactic sugar: [x] ==x:: []
s [X1;X2; ..;xn] ==x1:x2:..iixnii[]

9/1/16

19

i Lists

let fib5 = [8;5;3;2;1:11;;

val fib5 :intlist = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[1) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt ist =[8;5; 3;2;1:1; 13; 8;5; 3; 2; 1;
1

9/1/16 20

i Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

9/1/16

21

i Question

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5; 6,7]

(2.3,4),; (3.2,5), (6,7.2)]

[“hi”; “there”]; ["wahcha™]; [1; [“doin”]]

ol S

9/1/16 22

i Answer

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5; 6,7]

(2.3,4),; (3.2,5), (6,7.2)]

[“hi”; “there”]; ["wahcha™]; [1; [“doin”]]

ol S

= 3 isinvalid because of last pair

9/1/16 23

i Functions Over Lists

let rec double_up list =

match list

with [| ->[] (* pattern before ->,

expression after *)
| (X ::xs)-> (X :: X ::double_up xs);;

val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5 2 :intlist=1[8; 8; 5;5; 3; 3; 2; 2; 1;

1;1; 1]

9/1/16 24

i Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [] -> []

| (X::XS) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/1/16 25

i Question: Length of list

= Problem: write code for the length of the list
= How to start?

let length | =

9/1/16 26

i Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length | =
match | with

9/1/16 27

i Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with

9/1/16 28

i Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with [] ->
| (@ :: bs) ->

9/1/16 29

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) ->

9/1/16 30

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) ->

9/1/16 31

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) -> 1 + length bs

9/1/16 32

i Same Length

= How can we efficiently answer if two lists
have the same length?

9/1/16

33

i Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length listl list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (X::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length Xxs ys)

9/1/16 34

i Functions with more than one argument

let add_threexyz=x+vy + z;;

val add _three : int -> int -> int -> int = <fun>

lett = add_three 6 3 2;;

valt:int =11

let add_three =
funx->(funy->(funz->x+vy+2));;

val add three : int -> int -> int -> int = <fun>

\Again, first syntactic sugar for second |

9/1/16 35

* Partial application of functions

‘Iet add_threexyz=x+vy + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-1int =12

#h7:;

-1 int = 16

9/1/16 36

Functions as arguments

+

let thrice f x = f (f (f xX));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#4394

- int =10

thrice (fun s -> "Hil " s) "Good-bye!";:
- . string = "Hi! Hi! Hi! Good-bye!"

9/1/16

#
va
#

#
va

i Functions on tuples

et plus_pair (n,m) = n + m;;
plus_pair : int * int -> int = <fun>
dlus_pair (3,4);;

int =7/

let double x = (Xx,X);;

| double : 'a -> 'a * 'a = <fun>

double 3;;

int * int = (3, 3)

double "hi";;

string * string = ("hi", "hi")

9/1/16

38

i Closure for plus_pair

= ASSume py,s pair Was the environment just
before plus_pair defined

= Closure for plus_pair:
<(h,m) =N+ m, Py pair™>
= Environment just after plus_pair defined:
iplus_pair — <(n,m) — n + m, ppys pair >

T Pplus_pair

9/1/16 39

i Warm-up Scoping Question

Consider this code:

let x = 27;;
let f x =
let x =5in
(fun x -> print_int x) 10;;

f12:;

What value is printed?
5

10

12

27

9/1/16

40

i Recall: let plus x =funx =>vy + X

let x =12

let plus x=funy=>y + x

letx =7

9/1/16 41

i Closure for plus_x

= When plus_x was defined, had environment:

p|3|US_X = {I X — 12, }
= Recall: let plus_xy =y + X

s really let plus_x =funy->y + X
s Closure for funy ->y + x:

<y —=VY + X, pplUS_X >
= Environment just after plus_x defined:

{plUS_X — <Yy =Y + X, pplus_x >} + pp|US_X

9/1/16

42

#
va
#

#
va

i Functions on tuples

et plus_pair (n,m) = n + m;;
plus_pair : int * int -> int = <fun>
dlus_pair (3,4);;

int =7/

let double x = (Xx,X);;

| double : 'a -> 'a * 'a = <fun>

double 3;;

int * int = (3, 3)

double "hi";;

string * string = ("hi", "hi")

9/1/16

43

i Save the Environment!

= A closureis a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

< (vl,..,vn) —exp, p >

= Where p is the environment in effect when
the function is defined (for a simple function)

9/1/16 44

i Closure for plus_pair

= ASSume py,s pair Was the environment just
before plus_pair defined

s Closure for fun (n,m) -> n + m:
<(h,m) =N+ m, Py pair™>
= Environment just after plus_pair defined:
iplus_pair — <(n,m) — n + m, ppys pair >

T Pplus_pair

9/1/16 45

i Functions with more than one argument

let add_threexyz=x+vy + z;;

val add _three : int -> int -> int -> int = <fun>

lett = add_three 6 3 2;;

valt:int =11

let add_three =
funx->(funy->(funz->x+vy+2));;

val add three : int -> int -> int -> int = <fun>

\Again, first syntactic sugar for second |

9/1/16 46

i Curried vs Uncurried

= Recall

val add _three : int -> int -> int -> int = <fun>
= How does it differ from

let add_triple (u,v,w) =u + v + w;;

val add_triple : int * int * int -> int = <fun>

= add_three is curried;
= add_triple is uncurried

9/1/16 47

i Curried vs Uncurried

add_triple (6,3,2);;
-:int=11
add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NANNNANNNANNN
This function is applied to too many arguments,
maybe you forgot a ;'
fun x -> add_triple (5,4,x);;
: int -> int = <fun>

9/1/16

48

* Partial application of functions

‘Iet add_threexyz=x+vy + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-1int =12

#h7:;

-1 int = 16

9/1/16 49

+

Your turn now

Try later parts from WA1
Caution!

Know what the argument is
and what the body is

9/1/16

Functions as arguments

+

let thrice f x = f (f (f xX));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;

val g : int -> int = <fun>

#4394

- int =10

thrice (fun s -> "Hil " s) "Good-bye!";:
- . string = "Hi! Hi! Hi! Good-bye!"

9/1/16

i Evaluating declarations

= Evaluation uses an environment p

= T0 evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update p with x v: {x = v} +p

= Update: p,+ p, has all the bindings in p, and
all those in p, that are not rebound in p;,

X—=2,y—=3,a—"hi"} +{y— 100, b — 6}
={x—=2,y—=3,a—"hi", b — 6}

9/1/16 52

i Evaluating expressions

= Evaluation uses an environment p
= A constant evaluates to itself
= 10 evaluate an variable, look it up in p (p(v))

= T0 evaluate uses of +, _, etc, eval args,
then do operation

= Function expression evaluates to its closure

= 1O evaluate a local dec: let x = el in e2
=« Eval el tov, eval e2 using {x = v} + p

9/1/16 53

i Evaluation of Application with Closures

= In environment p, evaluate left term to closure,
C = <(Xy,..,%X,) = b, p>

s (X4,...,X,) variables in (first) argument
s Evaluate the right term to value (v4,...,v,)
= Update the environment p to

0 = {X; = Vi, X, =V _}+ p

= Evaluate body b in environment p’

9/1/16 54

i Evaluation of Application of plus_x::

= Have environment:
p = {plus_x = <y =y + X, Ppjys_ x 1 -+ s
y—3, ..}

where pj s x =X — 12, ...}
= Eval (plus_x vy, p) rewrites to
s App (<Y = Yy + X, Oplus_x 3) rewrites to
= Eval (y + X, 1y = 3} +ppjys_x) rewrites to
= Eval (3 + 12, Pplus_x) = 15

9/1/16 55

i Evaluation of Application of plus_pair

s Assume environment

p={x—3..,
plus_pair —<(n,m) —=n + m, pus pair>t +

pplus_pair
= Eval (plus_pair (4,x), p)=

= App (<(n,m) —=n + m, Pplus_pair~ (4,3)) =
« Eval(n + m, {n->4, m->3} + ps pair) =

= Eval (4 + 3, {n->4, m->3} + pyus pair) = 7

9/1/16

56

i Closure question

= If we start in an empty environment, and we
execute:

letf =funn->n+5;;

(*0 %)

et pair_map g (h,m) =(gn,gm);;
et f = pair_map f;;

eta=1f(4,06);;

What is the environment at (* 0 *)?

9/1/16 57

i Answer

letf =funn->n+5;;

pp={f—=<n—=n+5,{}>}

9/1/16

58

i Closure question

= If we start in an empty environment, and we
execute:

letf = fun=>n+5;;

let pair_map g (n,m) =(gn, gm);;
(*1%)

let f = pair_map f;;

leta = (4,6);;

What is the environment at (* 1 *)?

9/1/16 59

i Answer

pp={f—=<n—=n+5,{}>}
let pair_map g (n,m) = (g n, g m);;

p; = {pair_map —
<g — fun (n,m)->(gn, gm),
{f=<n—-=n+5,{}>}>,
f-<n—=n+5{}>}

9/1/16

60

i Closure question

= If we start in an empty environment, and we
execute:

etf=fun=>n+5;;

et pair_map g (h,m) =(gn, g m);;
et f = pair_map f;;

(* 2 %)

leta = (4,6);;

What is the environment at (* 2 *)?

9/1/16 61

i Evaluate pair_map f

pp={f—=<n—=n+5,{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), py>,
f-<n—=n+5,{}>}

let f = pair_map f;;

9/1/16 62

i Evaluate pair_map f

pp={f—=<n—=n+5,{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), py>,
f-<n—=n+5,{}>}

Eval(pair_map f, p,) =

9/1/16 63

i Evaluate pair_map f

pp={f—=<n—=n+5,{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), py>,
f-<n—=n+5,{}>}

Eval(pair_map f, p,) =

App (<g—fun (n,m) -> (g n, g m), py>,
<n—=n+5{}>)=

9/1/16 64

i Evaluate pair_map f

pp={f—=<n—=n+5,{}>}

p; = {pair_map —<g—fun (n,m) -> (g n, g m), py>,
f-<n—=n+5,{}>}

Eval(pair_map f, p;) =

App (<g—fun (n,m) -> (g n, g m), py>,
<n—=n+5{}>)=

Eval(fun (n,m)->(g n, g m), {g—<n—=n + 5, { }>}+p,)

=<(n,m) —=(g n, g m), {g—=<n—n + 5, { }>}+p,>

=<(n,m) —=(g n,gm), {g—=<n—=n+5,{}>

f-<n—n+5,{}>}

9/1/16 65

i Answer

p; = {pair_map —

<g— fun(nm)->(gn,gm){f = <n—-=n+5,{}>}>,

f—-<n—=n+5{}>}

let f = pair_map f;;

p; ={f = <(h,m) =(gn, gm),
{g—<n—=n+5,{}>,
f=<n—=n+5, {}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f—=<n—=n+5{}>}>}

9/1/16 66

i Closure question

= If we start in an empty environment, and we
execute:

etf=fun=>n+5;;

et pair_map g (h,m) =(gn, g m);;
et f = pair_map f;;

eta=f(4,6);;

(*3 %)

What is the environment at (* 3 *)?

9/1/16 67

i Final Evalution?

p; ={f = <(nh,m) =(gn, g m),
{g—=<n—=n+5,{}>,
f-<n—=n+5, {}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f=><n—-=n+5{}>}>}
leta =f (4,6);;

9/1/16

68

i Evaluate f (4,6);;

p, = {f = <(n,m) —=(g n, g m),
{g—=<n—=n+5,{}>,
f=<n—=n+5, {}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f=><n—-=n+5{}>}>}

Eval(f (416)1 pZ) =

9/1/16

69

i Evaluate f (4,6);;

p, = {f = <(n,m) =(g n, g m),
{g—=<n—=n+5,{}>,
f=<n—=n+5, {}>}>,

pair_map — <g — fun (n,m) -> (g n, g m),
{f=><n—-=n+5{}>}>}

Eval(f (416)1 pZ) =

App(<(n,m) =(gn,gm),{g —<n—=n+5,{}>,
f—=<n—=n+5,{}>}>,

(4,6)) =

9/1/16 70

i Evaluate f (4,6);;

App(<(n,m) =(gn,gm),{g = <n—=n+5,{}>
f—-<n—=n+5,{}>}>,

(4,6)) =

Eval((gn,gm),{n -4, m — 6} +
{g—=<n—=n+5,{}>,
f—=<n—=n+5{}>})=

Eval((App(<n — n + 5, { }>, 4),

App (<n —=n+5,{ }>, 6)),

{N—4m—=6, g—<n—->n+5,{}>,

f=<n—=n+5{}>}) =

9/1/16 71

i Evaluate f (4,6);;

p3={ne4lme6l ge<nen+5,{}>,

f—=<n—=n+5 {}>})
Eval((App(<n = n + 5, { }>, 4),

App (<n —=n +5,{ }>,6)), p3) =
Eval((Eval(n + 5, {n — 4} + { }),

(Eval(n + 5, N — 6} + { })), p3)
Eval((Eval(4 + 5, {n — 4} + { }),

(Eval(6 + 5, {N — 6} + { 1)), p3)
Eval((9, 11), p;) = (9, 11)

9/1/16

72

i Higher Order Functions

= A function is higher-order if it takes a
function as an argument or returns one as
a result

= Example:

let compose f g = fun x -> f (g x);;

val compose : ('a->'b) -> ('c->"a) -> 'c ->

'b = <fun>

= Thetype ('a->'b)->(c->"a)->'c->'b
is @ higher order type because of
('a->'b)and (‘c->'a)and ->'c->'b

9/1/16 73

i Thrice

= Recall: |
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
| « How do you write thrice with compose? |

9/1/16

74

i Thrice

' Recall: |
let thrice f x = f (f (f X));;
val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
| = How do you write thrice with compose? |
let thrice f = compose f (compose f f);;
val thrice : ("fa -> 'a) -> 'a -> 'a = <fun>
= [s this the only way?

9/1/16 75

i Partial Application

#(+);

- 1int-> int -> int = <fun>

#(+) 23},

-:int=75

let plus_two = (+) 2;;

val plus_two : int -> int = <fun>

plus_two 7;;

-:int=9

= Patial application also called sectioning

9/1/16 76

i Lambda Lifting

= YOUu must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add two : int -> int = <fun>
#letadd2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;
val add? : int -> int = <fun>

9/1/16 77

i Lambda Lifting

thrice add_two 5;;

-:1int =11

thrice add2 5;;
test

test

test

-:1int =11

= Lambda lifting delayed the evaluation of the
argument to (+) until the second argument

was supplied

9/1/16 78

i Partial Application and “Unknown Types”

| = Recall compose plus_two: |
let f1 = compose plus_two;;
val f1 : (_a->int) ->'_a-> int = <fun>

| = Compare to lambda lifted version: |
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>

| = What is the difference? |

9/1/16 79

Partial Application and “Unknown Types”

= _a can only be instantiated once for an expression‘
f1 plus_two;;
- 1 int -> int = <fun>
f1 List.length;;
Characters 3-14:
f1 List.length;;

NNNANANNNANNNANN

This expression has type 'a list -> int but is here used
with type int -> int

9/1/16 80

* Partial Application and “Unknown Types”

|= ‘a can be repeatedly instantiated |

f2 plus_two;;

- int -> int = <fun>

f2 List.length;;

-: ' alist -> int = <fun>

9/1/16 81

i Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh):: (map ft);;
val map : (fa -> 'b) -> "a list -> 'b list = <fun>
map plus_two fib5;;
- rintlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
cint list =[12; 7; 4; 2; 1; 0; 0]

9/1/16 82

i [terating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('la->'b->"a)->'a->'blist->"'a=
<fun>
fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

9/1/16

83

i [terating over lists

let rec fold_right f list b =
match list
with []-> b
| (X :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->"'b) -> "alist->'b->'b =
<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
o
therehi- : unit = ()

9/1/16 84

i Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/1/16 85

i Structural Recursion : List Example

let rec length list = match list
with [] -> 0 (* Nil case *)

| X :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>
length [5; 4, 3; 2];;
-:int=4

= Nil case [] is base case
= Cons case recurses on component list xs

9/1/16

86

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

s Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/1/16 87

i Forward Recursion: Examples

let rec double_up list =
match list
with[]->1]]
| (X :: xS) -> (X :: X :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []
| (X::XS) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/1/16

88

i Encoding Recursion with Fold

let rec append listl list2 = match listl with
[]-> list2 | x::xs -> x :: append xs list2;;
val apa@nd : 'a list -> |a list ->§§ ist = <fun>

| Base Case | |Operation || Recursive Call |

let append listl listZ ™=
fold_right (fun x y -> x ::y) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4,5;6];;
-intlist = [1; 2; 3; 4; 5; 6]

9/1/16 89

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]->1]]
| X::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- 1 int list = [4; 6; 8]

9/1/16 90

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelist [2;3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no rec

9/1/16

91

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4,6];;
- 1 int = 48
= Computes (2* (4 * (6 *1)))

9/1/16 92

i Folding Recursion

= multList folds to the right
= Same as:
let multList list =
List.fold_right
(fun X -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4,6];;
- 1 int = 48

9/1/16 93

i How long will it take?

= Remember the big-O notation from CS 225
and CS 273

= Question: given input of size n, how long to
generate output?

= EXpress output time in terms of input size,
omit constants and take biggest power

9/1/16 94

i How long will it take?

Common big-0 times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O (n¢)
= double input = quadruple time
= Exponential time O (27)
= increment input = double time

9/1/16

95

Time

i Linear

= Expect most list operations to take

linear time O (n)
= Each step of the recursion can be done

IN consta

nt time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

9/1/16

96

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (X::XS) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/1/16 97

i Exponential running time

= Hideous running times on input of any size
= Each step of recursion takes constant time
= Each recursion makes two recursive calls

= Easy to write naive code that is exponential

for functions that can be linear

9/1/16 98

i Exponential running time

let rec naiveFib n = match n
with 0 -> 0
1->1
_=> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

9/1/16

99

i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know
to where to return when the
L call is finished

g = What if fcalls gand g calls A,

F but calling A is the last thing g
does (a tail call)?

9/1/16 100

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
& L call is finished

f = What if fcalls gand g calls A,

but calling A is the last thing g
does (a tail call)?

= Then h can return directly to 1
instead of g

9/1/16 101

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

= May require an auxiliary function

9/1/16 102

i Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X 17 Xs -> rev_aux xs (X::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/1/16 103

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @[2]) @[1] =
= ([J@[3]) @[2]) @[1]) =

= (3]1@[2]) @[1] =

s B([1@[2]) @[1] =

. [312] @ [1] —

= 3 ([2]@1]) =

s 32 (1@[1]) =13, 2, 1]

9/1/16 104

i Comparison

mrev[1,2,3] =

= rev_aux [1,2,3][] =

= rev_aux [2,3] [1] =

= rev_aux [3] [2,1] =

= rev_aux|[]1[3,2,1] =[3,2,1]

9/1/16 105

i Folding Functions over Lists

| How are the following functions similar? |

let rec sumlist list = match list with
[1-> 0| x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let rec prodlist list = match list with
[1-> 1] x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- int = 24

9/1/16 106

i Folding

let rec fold_left f a list = match list
with []->a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left: ('la->'b->"a)->'a->'blist->"'a=
<fun>

fold_left f a [Xy; Xo;...;x,] = f(...(f (f @ X;) X,)...)X,

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->"'b) -> "alist->'b->'b =
<fun>
‘fold_right f[Xy; X55..0%,] b = £ x,(F %, (...(f X, b)...)) ‘

9/1/16 107

i Folding - Forward Recursion

let sumlist list = fold_right (+) list O;;
val sumlist : int list -> int = <fun>

sumlist [2:3:4];;

-:int=9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4]:;

- 1int =24

9/1/16 108

i Folding - Tail Recursion

- # letrev list =
fold _left
(funl->funx->x::1) //comb op
[] //accumulator cell

list

9/1/16 109

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

9/1/16 110

