
9/1/16 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Your turn now

Try steps 1 - 3 from
WA0-practice

9/1/16 2

9/1/16 3

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19
let plus_two = fun n -> n + 2;;
val plus_two : int -> int = <fun>
plus_two 14;;
- : int = 16
First definition syntactic sugar for second

9/1/16 4

Using a nameless function

(fun x -> x * 3) 5;; (* An application *)
- : int = 15
((fun y -> y +. 2.0), (fun z -> z * 3));;

(* As data *)
- : (float -> float) * (int -> int) = (<fun>,

<fun>)

Note: in fun v -> exp(v), scope of variable is

only the body exp(v)

9/1/16 5

Values fixed at declaration time

let x = 12;;
val x : int = 12
let plus_x y = y + x;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

X è 12
 …

9/1/16 6

Values fixed at declaration time

let x = 12;;
val x : int = 12
let plus_x y = y + x;;
val plus_x : int -> int = <fun>
plus_x 3;;
- : int = 15

9/1/16 7

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;

What is the result this time?

9/1/16 8

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;

What is the result this time?

X è 12
 …

X è 7
 …

9/1/16 9

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7

plus_x 3;;
- : int = 15

9/1/16 10

Question

n  Observation: Functions are first-class values
in this language

n  Question: What value does the environment
record for a function variable?

n  Answer: a closure

9/1/16 11

Save the Environment!

n  A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f → < (v1,…,vn) → exp, ρf >

n  Where ρf is the environment in effect when f
is defined (if f is a simple function)

9/1/16 12

Closure for plus_x

n  When plus_x was defined, had environment:

ρplus_x = {…, x → 12, …}

n  Recall: let plus_x y = y + x

 is really let plus_x = fun y -> y + x

n  Closure for fun y -> y + x:

<y → y + x, ρplus_x >

n  Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Now it’s your turn

You should be able to do remainder
of WA0-practice

9/1/16 13 9/1/16 14

• Each clause: pattern on
left, expression on right

• Each x, y has scope of
only its clause

• Use first matching clause

Match Expressions

let triple_to_pair triple =

 match triple

 with (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int =
<fun>

9/1/16 15

Recursive Functions

let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)

9/1/16 16

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
 match n (* pattern matching for cases *)
 with 0 -> 0 (* base case *)
 | n -> (2 * n -1) (* recursive case *)
 + nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
-  : int = 9

Structure of recursion similar to inductive proof

9/1/16 17

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
 | n -> (2 * n - 1) + nthsq (n - 1) ;;

n  Base case is the last case; it stops the computation
n  Recursive call must be to arguments that are

somehow smaller - must progress to base case
n  if or match must contain base case
n  Failure of these may cause failure of termination

9/1/16 18

Lists

n  First example of a recursive datatype (aka
algebraic datatype)

n  Unlike tuples, lists are homogeneous in
type (all elements same type)

9/1/16 19

Lists

n  List can take one of two forms:
n  Empty list, written []

n  Non-empty list, written x :: xs

n  x is head element, xs is tail list, :: called
“cons”

n  Syntactic sugar: [x] == x :: []

n  [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

9/1/16 20

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

9/1/16 21

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here

used with type int

9/1/16 22

Question

n  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

9/1/16 23

Answer

n  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§  3 is invalid because of last pair

9/1/16 24

Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->,
 expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

9/1/16 25

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

n  Problem: write code for the length of the list
n  How to start?

let length l =

9/1/16 26

Question: Length of list

n  Problem: write code for the length of the list
n  How to start?

let rec length l =
 match l with

9/1/16 27

Question: Length of list

n  Problem: write code for the length of the list
n  What patterns should we match against?

let rec length l =
 match l with

9/1/16 28

Question: Length of list

n  Problem: write code for the length of the list
n  What patterns should we match against?

let rec length l =
 match l with [] ->
 | (a :: bs) ->

9/1/16 29

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

9/1/16 30

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is not empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

9/1/16 31

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is not empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs

9/1/16 32

Same Length

n  How can we efficiently answer if two lists
have the same length?

9/1/16 33

Same Length

n  How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
 match list1 with [] ->
 (match list2 with [] -> true
 | (y::ys) -> false)
 | (x::xs) ->
 (match list2 with [] -> false
 | (y::ys) -> same_length xs ys)
 9/1/16 34

9/1/16 35

Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>
 Again, first syntactic sugar for second

9/1/16 36

Partial application of functions

 let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

9/1/16 37

Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

Functions on tuples

let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;
- : int = 7
let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

9/1/16 38

9/1/16 39

Closure for plus_pair

n  Assume ρplus_pair was the environment just

before plus_pair defined

n  Closure for plus_pair:

<(n,m) → n + m, ρplus_pair>

n  Environment just after plus_pair defined:

 {plus_pair → <(n,m) → n + m, ρplus_pair >}

+ ρplus_pair

9/1/16 40

Consider this code:

let x = 27;;
let f x =
 let x = 5 in
 (fun x -> print_int x) 10;;
f 12;;

What value is printed?
 5
10
12
27

Warm-up Scoping Question

Recall: let plus_x = fun x => y + x

9/1/16 41

X è 12
 …

let x = 12

let plus_x = fun y => y + x

let x = 7

X è 12 …
plus_x è

X è 12
 …

y → y + x

plus_x è

 …
 x è7

X è 12
 …

y → y + x

9/1/16 42

Closure for plus_x

n  When plus_x was defined, had environment:

ρplus_x = {…, x → 12, …}

n  Recall: let plus_x y = y + x

 is really let plus_x = fun y -> y + x

n  Closure for fun y -> y + x:

<y → y + x, ρplus_x >

n  Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

Functions on tuples

let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;
- : int = 7
let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

9/1/16 43 9/1/16 44

Save the Environment!

n  A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

< (v1,…,vn) → exp, ρ >

n  Where ρ is the environment in effect when
the function is defined (for a simple function)

9/1/16 45

Closure for plus_pair

n  Assume ρplus_pair was the environment just

before plus_pair defined

n  Closure for fun (n,m) -> n + m:

<(n,m) → n + m, ρplus_pair>

n  Environment just after plus_pair defined:

 {plus_pair → <(n,m) → n + m, ρplus_pair >}

+ ρplus_pair

9/1/16 46

Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>
 Again, first syntactic sugar for second

9/1/16 47

Curried vs Uncurried

n  Recall
val add_three : int -> int -> int -> int = <fun>
n  How does it differ from
let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>

n  add_three is curried;
n  add_triple is uncurried

9/1/16 48

Curried vs Uncurried

add_triple (6,3,2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5,4,x);;
: int -> int = <fun>

9/1/16 49

Partial application of functions

 let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

Your turn now

Try later parts from WA1
Caution!

Know what the argument is
and what the body is

9/1/16 50

9/1/16 51

Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

Evaluating declarations

n  Evaluation uses an environment ρ
n  To evaluate a (simple) declaration let x = e

n  Evaluate expression e in ρ to value v
n  Update ρ with x v: {x → v} + ρ

n  Update: ρ1+ ρ2 has all the bindings in ρ1 and
all those in ρ2 that are not rebound in ρ1

{x → 2, y → 3, a → “hi”} + {y → 100, b → 6}
= {x → 2, y → 3, a → “hi”, b → 6}
 9/1/16 52

Evaluating expressions

n  Evaluation uses an environment ρ
n  A constant evaluates to itself
n  To evaluate an variable, look it up in ρ (ρ(v))
n  To evaluate uses of +, _ , etc, eval args,

then do operation
n  Function expression evaluates to its closure
n  To evaluate a local dec: let x = e1 in e2

n  Eval e1 to v, eval e2 using {x → v} + ρ

9/1/16 53 9/1/16 54

Evaluation of Application with Closures

n  In environment ρ, evaluate left term to closure,
c = <(x1,…,xn) → b, ρ>

n  (x1,…,xn) variables in (first) argument

n  Evaluate the right term to value (v1,…,vn)

n  Update the environment ρ to

 ρ’ = {x1 → v1,…, xn →vn}+ ρ

n  Evaluate body b in environment ρ’

9/1/16 55

Evaluation of Application of plus_x;;

n  Have environment:
 ρ = {plus_x → <y → y + x, ρplus_x >, … ,

 y → 3, …}
 where ρplus_x = {x → 12, …}

n  Eval (plus_x y, ρ) rewrites to
n  App (<y → y + x, ρplus_x >, 3) rewrites to
n  Eval (y + x, {y → 3} +ρplus_x) rewrites to
n  Eval (3 + 12 , ρplus_x) = 15

9/1/16 56

Evaluation of Application of plus_pair

n  Assume environment

ρ = {x → 3…,
 plus_pair →<(n,m) →n + m, ρplus_pair>} +
 ρplus_pair
n  Eval (plus_pair (4,x), ρ)=

n  App (<(n,m) →n + m, ρplus_pair>, (4,3)) =

n  Eval (n + m, {n -> 4, m -> 3} + ρplus_pair) =

n  Eval (4 + 3, {n -> 4, m -> 3} + ρplus_pair) = 7

Closure question

n  If we start in an empty environment, and we
execute:

 let f = fun n -> n + 5;;
 (* 0 *)
 let pair_map g (n,m) = (g n, g m);;
 let f = pair_map f;;
 let a = f (4,6);;
What is the environment at (* 0 *)?

9/1/16 57

Answer

let f = fun n -> n + 5;;

ρ0 = {f → <n → n + 5, { }>}

9/1/16 58

Closure question

n  If we start in an empty environment, and we
execute:

 let f = fun => n + 5;;
 let pair_map g (n,m) = (g n, g m);;
 (* 1 *)
 let f = pair_map f;;
 let a = f (4,6);;
What is the environment at (* 1 *)?

9/1/16 59

Answer

ρ0 = {f → <n → n + 5, { }>}
let pair_map g (n,m) = (g n, g m);;

ρ1 = {pair_map →
 <g → fun (n,m) -> (g n, g m),
 {f → <n → n + 5, { }>}>,
 f → <n → n + 5, { }>}

9/1/16 60

Closure question

n  If we start in an empty environment, and we
execute:

 let f = fun => n + 5;;
 let pair_map g (n,m) = (g n, g m);;
 let f = pair_map f;;
(* 2 *)
 let a = f (4,6);;
What is the environment at (* 2 *)?

9/1/16 61

Evaluate pair_map f

ρ0 = {f → <n → n + 5, { }>}
ρ1 = {pair_map →<g→fun (n,m) -> (g n, g m), ρ0>,
 f→<n → n + 5, { }>}
let f = pair_map f;;

9/1/16 62

Evaluate pair_map f

ρ0 = {f → <n → n + 5, { }>}
ρ1 = {pair_map →<g→fun (n,m) -> (g n, g m), ρ0>,
 f→<n → n + 5, { }>}
Eval(pair_map f, ρ1) =

9/1/16 63

Evaluate pair_map f

ρ0 = {f → <n → n + 5, { }>}
ρ1 = {pair_map →<g→fun (n,m) -> (g n, g m), ρ0>,
 f→<n → n + 5, { }>}
Eval(pair_map f, ρ1) =
App (<g→fun (n,m) -> (g n, g m), ρ0>,
 <n → n + 5, { }>) =

9/1/16 64

Evaluate pair_map f

ρ0 = {f → <n → n + 5, { }>}
ρ1 = {pair_map →<g→fun (n,m) -> (g n, g m), ρ0>,
 f→<n → n + 5, { }>}
Eval(pair_map f, ρ1) =
App (<g→fun (n,m) -> (g n, g m), ρ0>,
 <n → n + 5, { }>) =
Eval(fun (n,m)->(g n, g m), {g→<n→n + 5, { }>}+ρ0)
=<(n,m) →(g n, g m), {g→<n→n + 5, { }>}+ρ0>
=<(n,m) →(g n, g m), {g→<n→n + 5, { }>
 f→<n→n + 5, { }>}

 9/1/16 65

Answer

ρ1 = {pair_map →
<g → fun (n,m) -> (g n, g m),{f → <n → n + 5, { }>}>,
 f → <n → n + 5, { }>}
let f = pair_map f;;

ρ2 = {f → <(n,m) →(g n, g m),
 {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}>,
 pair_map → <g → fun (n,m) -> (g n, g m),
 {f → <n → n + 5, { }>}>}

9/1/16 66

Closure question

n  If we start in an empty environment, and we
execute:

 let f = fun => n + 5;;
 let pair_map g (n,m) = (g n, g m);;
 let f = pair_map f;;
 let a = f (4,6);;
(* 3 *)
What is the environment at (* 3 *)?

9/1/16 67

Final Evalution?

ρ2 = {f → <(n,m) →(g n, g m),
 {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}>,
 pair_map → <g → fun (n,m) -> (g n, g m),
 {f → <n → n + 5, { }>}>}
let a = f (4,6);;

9/1/16 68

Evaluate f (4,6);;

ρ2 = {f → <(n,m) →(g n, g m),
 {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}>,
 pair_map → <g → fun (n,m) -> (g n, g m),
 {f → <n → n + 5, { }>}>}
Eval(f (4,6), ρ2) =

9/1/16 69

Evaluate f (4,6);;

ρ2 = {f → <(n,m) →(g n, g m),
 {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}>,
 pair_map → <g → fun (n,m) -> (g n, g m),
 {f → <n → n + 5, { }>}>}
Eval(f (4,6), ρ2) =
App(<(n,m) →(g n, g m), {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}>,
 (4,6)) =

9/1/16 70

Evaluate f (4,6);;

App(<(n,m) →(g n, g m), {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}>,
 (4,6)) =
Eval((g n, g m), {n → 4, m → 6} +
 {g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}) =
Eval((App(<n → n + 5, { }>, 4),
 App (<n → n + 5, { }>, 6)),

 {n → 4, m → 6, g → <n → n + 5, { }>,
 f → <n → n + 5, { }>}) =
9/1/16 71

Evaluate f (4,6);;

ρ3 = {n → 4, m → 6, g → <n → n + 5, { }>,
 f → <n → n + 5, { }>})
Eval((App(<n → n + 5, { }>, 4),
 App (<n → n + 5, { }>, 6)), ρ3) =

Eval((Eval(n + 5, {n → 4} + { }),

 (Eval(n + 5, {n → 6} + { })), ρ3) =

Eval((Eval(4 + 5, {n → 4} + { }),

 (Eval(6 + 5, {n → 6} + { })), ρ3) =
Eval((9, 11), ρ3) = (9, 11)

9/1/16 72

9/1/16 73

Higher Order Functions

n  A function is higher-order if it takes a
function as an argument or returns one as
a result

n  Example:
let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>
n  The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

9/1/16 74

Thrice

n  Recall:
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
n  How do you write thrice with compose?

9/1/16 75

Thrice

n  Recall:
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
n  How do you write thrice with compose?
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
n  Is this the only way?

9/1/16 76

Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9
n  Patial application also called sectioning

9/1/16 77

Lambda Lifting

n  You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

9/1/16 78

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
n  Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

9/1/16 79

Partial Application and “Unknown Types”

n  Recall compose plus_two:
let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
n  Compare to lambda lifted version:
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
n  What is the difference?

9/1/16 80

Partial Application and “Unknown Types”

n  ‘_a can only be instantiated once for an expression
f1 plus_two;;
- : int -> int = <fun>
f1 List.length;;
Characters 3-14:
 f1 List.length;;
 ^^^^^^^^^^^
This expression has type 'a list -> int but is here used

with type int -> int

9/1/16 81

Partial Application and “Unknown Types”

n  ‘a can be repeatedly instantiated

f2 plus_two;;
- : int -> int = <fun>
f2 List.length;;
- : '_a list -> int = <fun>

9/1/16 82

Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/1/16 83

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

9/1/16 84

Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

9/1/16 85

Structural Recursion

n  Functions on recursive datatypes (eg lists)
tend to be recursive

n  Recursion over recursive datatypes generally
by structural recursion
n  Recursive calls made to components of structure

of the same recursive type
n  Base cases of recursive types stop the recursion

of the function

9/1/16 86

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n  Nil case [] is base case
n  Cons case recurses on component list xs

9/1/16 87

Forward Recursion

n  In Structural Recursion, split input into
components and (eventually) recurse

n  Forward Recursion form of Structural
Recursion

n  In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

n  Wait until whole structure has been
traversed to start building answer

9/1/16 88

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/1/16 89

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

9/1/16 90

Mapping Recursion

n  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

9/1/16 91

Mapping Recursion

n  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

n  Same function, but no rec

9/1/16 92

Folding Recursion

n  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n  Computes (2 * (4 * (6 * 1)))

9/1/16 93

Folding Recursion

n  multList folds to the right
n  Same as:
let multList list =
 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

9/1/16 94

How long will it take?

n  Remember the big-O notation from CS 225
and CS 273

n  Question: given input of size n, how long to
generate output?

n  Express output time in terms of input size,
omit constants and take biggest power

9/1/16 95

How long will it take?

Common big-O times:
n  Constant time O (1)

n  input size doesn’t matter
n  Linear time O (n)

n  double input ⇒ double time
n  Quadratic time O (n2)

n  double input ⇒ quadruple time
n  Exponential time O (2n)

n  increment input ⇒ double time

9/1/16 96

Linear Time

n  Expect most list operations to take
linear time O (n)

n  Each step of the recursion can be done
in constant time

n  Each step makes only one recursive call
n  List example: multList, append
n  Integer example: factorial

9/1/16 97

Quadratic Time

n  Each step of the recursion takes time
proportional to input

n  Each step of the recursion makes only one
recursive call.

n  List example:

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/1/16 98

Exponential running time

n  Hideous running times on input of any size

n  Each step of recursion takes constant time

n  Each recursion makes two recursive calls

n  Easy to write naïve code that is exponential

for functions that can be linear

9/1/16 99

Exponential running time

let rec naiveFib n = match n
 with 0 -> 0
 | 1 -> 1
 | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

9/1/16 100

Normal
call

h

g

f

…

An Important Optimization

n  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

9/1/16 101

Tail
call

h

f

…

An Important Optimization

n  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

n  Then h can return directly to f
instead of g

9/1/16 102

Tail Recursion

n  A recursive program is tail recursive if all
recursive calls are tail calls

n  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n  May require an auxiliary function

9/1/16 103

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

n  What is its running time?

9/1/16 104

Comparison

n  poor_rev [1,2,3] =
n  (poor_rev [2,3]) @ [1] =
n  ((poor_rev [3]) @ [2]) @ [1] =
n  (((poor_rev []) @ [3]) @ [2]) @ [1] =
n  (([] @ [3]) @ [2]) @ [1]) =
n  ([3] @ [2]) @ [1] =
n  (3:: ([] @ [2])) @ [1] =
n  [3,2] @ [1] =
n  3 :: ([2] @ [1]) =
n  3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/1/16 105

Comparison

n  rev [1,2,3] =
n  rev_aux [1,2,3] [] =
n  rev_aux [2,3] [1] =
n  rev_aux [3] [2,1] =
n  rev_aux [] [3,2,1] = [3,2,1]

9/1/16 106

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

9/1/16 107

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/1/16 108

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

9/1/16 109

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun l -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

9/1/16 110

Folding

n  Can replace recursion by fold_right in any
forward primitive recursive definition
n  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n  Can replace recursion by fold_left in any tail
primitive recursive definition

