

Example Regular Expressions

Regular Grammars

- Subclass of BNF (covered in detail sool)
- Only rules of form <nonterminal>::=<terminal> <nonterminal> or <nonterminal>::=<terminal> or <nonterminal>::= ε
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata - nonterminals \cong states; rule \cong edge 10/22/15 3

Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
- Identifier $=(a \vee b \vee \ldots \vee z \vee A \vee B \vee \ldots \vee Z)(a$ v $b \vee \ldots \vee z \vee A \vee B \vee \ldots \vee Z \vee 0 \vee 1 \vee \ldots \vee 9) *$
- Digit $=(0 \vee 1 \vee \ldots \vee 9)$
- Number $=0$ v (1 v ... $\vee 9)(0 \vee \ldots$ 9)* \vee ~ (1 v ... v 9) (0 v ... v 9)*
- Keywords: if = if, while = while,...

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
- which option to choose,
- how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

Lexing

- Different syntactic categories of "words": tokens
Example:
- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
- A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml

How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.

Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file <filename>.mll
- Call
ocamllex <filename>.mll
- Produces Ocaml code for a lexical analyzer in file <filename>.ml

Sample Input

rule main = parse
['0'-'9']+ \{ print_string "Int\n"\}
| ['0'-'9']+'.'['0'-'9']+ \{ print_string "Float\n"\}
| ['a'-'z']+ \{ print_string "String\n"\}
| _ \{ main lexbuf \}
\{
let newlexbuf = (Lexing.from_channel stdin) in print_string "Ready to lex.\n";
main newlexbuf
\}

10/22/15

General Input

\{ header \}

let ident $=$ regexp \ldots
rule entrypoint [arg1... argn] = parse regexp \{ action \}
| ...
| regexp \{ action \}
and entrypoint [arg1... argn] = parse ...and ...
\{ trailer \}

Ocamllex Input

- <filename>.ml contains one lexing function per entrypoint
- Name of function is name given for entrypoint
- Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type Lexing.lexbuf
- arg1... argn are for use in action

Ocamllex Regular Expression

- [$c_{1}-c_{2}$]: choice of any character between first and second inclusive, as determined by character codes
- [${ }^{\wedge} C_{1}-C_{2}$]: choice of any character NOT in set
- e^{*} : same as before
- e+: same as e e^{*}
- e?: option - was $e_{1} \vee \varepsilon$

Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml
- let ident = regexp ... Introduces ident for use in later regular expressions

Ocamllex Regular Expression

Single quoted characters for letters: 'a'

- _: (underscore) matches any letter
- Eof: special "end_of_file" marker
- Concatenation same as usual
- "string": concatenation of sequence of characters
- e_{1} / e_{2} : choice - what was $e_{1} \vee e_{2}$

10/22/15

Ocamllex Regular Expression

- $e_{1} \# e_{2}$: the characters in e_{1} but not in $e_{2} ; e_{1}$ and e_{2} must describe just sets of characters
- ident: abbreviation for earlier reg exp in let ident = regexp
- e_{1} as $i d$: binds the result of e_{1} to id to be used in the associated action

Ocamllex Manual

- More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/ manual026.html

Example : test.mll

rule main = parse
(digits)'.'digits as f \{ Float (float_of_string f) \}
| digits as $\mathrm{n} \quad\{$ Int (int_of_string n) \}
| letters as s \{ String s\}
| _ \{ main lexbuf \}
$\{$ let newlexbuf $=$ (Lexing.from_channel stdin) in
print_string "Ready to lex.";
print_newline ();
main newlexbuf \}

10/22/15

Example

\# let b = Lexing.from_channel stdin;;
\# main b;;
hi 673 there

- : result = String "hi"
\# main b;;
- : result = Int 673
\# main b;;
- : result = String "there"

Example : test.mll

\{ type result = Int of int | Float of float | String of string \}
let digit $=$ ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case $=$ ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

10/22/15

Example

\# \#use "test.ml";;
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>
Ready to lex.
hi there 2345.2

- : result = String "hi"

What happened to the rest?!?

10/22/15

Your Turn

- Work on ML4
- Add a few keywords
- Implement booleans and unit
- Implement Ints and Floats
- Implement identifiers

Problem

- How to get lexer to look at more than the first token at one time?
- One Answer: action tells it to -- recursive calls
- Side Benefit: can add "state" into lexing
- Note: already used this with the _ case

Example Results

Ready to lex.
hi there 2345.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]
\#

Used Ctrl-d to send the end-of-file signal

Dealing with comments

| open_comment \{ comment lexbuf\}
| eof $\{[]\}$
| _ \{ main lexbuf \}
and comment = parse
close_comment \{ main lexbuf \}
I_ \{ comment lexbuf \}

Example

rule main $=$ parse
(digits) '.' digits as f \{ Float
(float_of_string f) :: main lexbuf\}
| digits as $\mathrm{n} \quad\{$ Int (int_of_string n): : main lexbuf \}
| letters as s \{String s :: main lexbuf\}
| eof $\{[]\}$
I_ \{ main lexbuf \}

10/22/15
26

Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
(digits) '.' digits as f \{ Float (float_of_string
f) :: main lexbuf\}
| digits as $\mathrm{n} \quad\{$ Int (int_of_string n) :: main lexbuf \}
| letters as s \{ String s :: main lexbuf\}

10/22/15

Dealing with nested comments
rule main = parse...
| open_comment \{ comment 1 lexbuf\}
| eof $\{[]\}$
| _ \{ main lexbuf \}
and comment depth $=$ parse
open_comment $\quad\{$ comment (depth+1)
lexbuf $\}$
| close_comment $\quad\{$ if depth $=1$
then main lexbuf
else comment (depth - 1) lexbuf \}
I _
\{ comment depth lexbuf \}

10/22/15

```
rule main = parse
    (digits) '.' digits as f { Float (float_of_string f) ::
    main lexbuf}
| digits as n { Int (int_of_string n) :: main
    lexbuf }
    | letters as s { String s :: main lexbuf}
    | open_comment { (comment 1 lexbuf}
    | eof {[]}
    | _ { main lexbuf }
```


Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Whole family more of grammars and automata - covered in automata theory

BNF Grammars

- Start with a set of characters, $\mathbf{a}, \mathbf{b}, \mathbf{c}, .$. - We call these terminals
- Add a set of different characters, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$,
- We call these nonterminals
- One special nonterminal S called start symbol

Dealing with nested comments
and comment depth = parse
open_comment \quad comment (depth+1) lexbuf \}
| close_comment $\quad\{$ if depth $=1$
then main lexbuf else comment (depth-1) lexbuf \}
$I \quad$ \{ comment depth lexbuf \}

Sample Grammar

- Language: Parenthesized sums of 0 ' s and 1's
- <Sum> ::= 0
- <Sum >::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

BNF Grammars

- BNF rules (aka productions) have form
X ::= y
where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals
- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: $01+$ ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::=0
- <Sum >::=1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
<Sum> ::=0|1

$$
\mid<\text { Sum }>+<\text { Sum }>\mid(<\text { Sum }>)
$$

10/22/15

BNF Derivations

- Start with the start symbol:
<Sum> =>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum $>=><$ Sum $>+<$ Sum $>$

BNF Deriviations

- Given rules

$$
\mathbf{X}::=y \mathbf{Z} w \text { and } \mathbf{Z}::=v
$$

we may replace \mathbf{Z} by v to say

$$
\mathbf{X}=>y \mathbf{Z} w=>y v w
$$

- Sequence of such replacements called derivation
- Derivation called right-most if always replace the right-most non-terminal

10/22/15

BNF Derivations

- Pick a non-terminal
<Sum> =>

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum > => (<Sum>) + <Sum>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { SUum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { SSum }>)+\text { Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 1
<Sum> => <Sum> + <Sum >
$=>(\langle$ Sum $>)+$ SSum $>$
=> (<Sum> + <Sum>) + <Sum>
$=>(\langle$ Sum $>+1)+$ <Sum $>$

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =>\text { <Sum }>+ \text { <Sum }> \\
& =>(<\text { Sum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+ \text { <Sum }>)+\text { SUum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 0
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+1)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute
- <Sum> ::= 0
<Sum> => <Sum> + <Sum >
$=>($ SUum $>)+$ <Sum >
$=>($ Sum $>+$ <Sum >) + <Sum>
$=>(\langle$ Sum $>+1)+$ <Sum $>$
$=>(\langle$ Sum $>+1) 0$
$=>(0+1)+0$

<Sum> ::=0|1| <Sum> + <Sum> | (<Sum>)

<Sum> =>

BNF Semantics

- The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol

BNF Derivations

- $(0+1)+0$ is generated by grammar

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+<\text { Sum }> \\
& =>(<\text { Sum }>)+<\text { Sum }> \\
& =>(<\text { Sum }>+<\text { Sum }>)+<\text { Sum }> \\
& =>(<\text { Sum }>+1)+<\text { Sum }> \\
& =>(<\text { Sum }>+1)+0 \\
& =>(0+1)+0
\end{aligned}
$$

Regular Grammars

- Subclass of BNF
- Only rules of form
<nonterminal>::=<terminal> <nonterminal> or <nonterminal>::=<terminal> or
<nonterminal>::= ε
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata - nonterminals \cong states; rule $\cong ~ e d g e ~$

Extended BNF Grammars

- Alternatives: allow rules of from $\mathrm{X}::=y / z$
- Abbreviates $X::=y, X::=z$
- Options: $X::=y[v] z$
- Abbreviates $\mathrm{X}::=y v z, \mathrm{X}::=y z$
- Repetition: $\mathrm{X}::=y\{v\}^{*} z$
- Can be eliminated by adding new nonterminal V and rules $X::=y z, X::=y V z$, $\mathrm{V}::=\mathrm{v}, \mathrm{V}::=W$

Example

- Consider grammar:

```
<exp> ::= <factor>
            | <factor> + <factor>
    <factor> ::= <bin>
        | <bin> * <exp>
    <bin> ::= 0 | 1
```

- Problem: Build parse tree for $1 * 1+0$ as an <exp>

Example

- Regular grammar:
<Balanced> ::=
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1 <ZeroAndMore>
<OneAndMore> ::= 1 <Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 ' s as 1 ' s

10/22/15

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

10/22/15

Example cont.

- $1^{*} 1+0: \quad$ <exp>
<exp> is the start symbol for this parse tree

Example cont.

- 1 * $1+0$:

<exp> <factor>

Use rule: <exp> ::= <factor>

Example cont.

- 1 * $1+0$:

Use rules: <bin> ::= 1 and <exp> ::= <factor> + <factor>

Example cont.

- 1 * 1 + 0 :

Use rules: <bin> ::= 1|0

Example cont.

- 1 * $1+0$: <exp>

Use rule: <factor> ::= <bin> * <exp>

10/22/15
62

Example cont.

- $1 * 1+0: \quad$ <exp>

Use rule: <factor> ::= <bin> 10/22/15

Example cont.

- 1 * $1+0:$ <exp>

Fringe of tree is string generated by grammar 10/22/15

Your Turn: 1 * $0+0$ * 1

Example

- Recall grammar:
<exp> ::= <factor> | <factor> + <factor> <factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1
- type exp = Factor2Exp of factor
| Plus of factor * factor
and factor $=$ Bin2Factor of bin
| Mult of bin * exp
and bin $=$ Zero | One

Example cont.

- Can be represented as

Factor2Exp
(Mult(One,
Plus(Bin2Factor One, Bin2Factor Zero)))

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example cont.

- 1 * $1+0$: <exp>

10/22/15
70

Ambiguous Grammars and Languages

- A BNF grammar is ambiguous if its language contains strings for which there is more than one parse tree
- If all BNF's for a language are ambiguous then the language is inherently ambiguous

Example: Ambiguous Grammar

- $0+1+0$

Example

- What is the result for:

$$
3+4 * 5+6
$$

- Possible answers:
- $41=((3+4) * 5)+6$
- $47=3+(4 *(5+6))$
- $29=(3+(4 * 5))+6=3+((4 * 5)+6)$
- $77=(3+4) *(5+6)$

Example

- What is the value of:

$$
7-5-2
$$

- Possible answers:
- In Pascal, C++, SML assoc. left
$7-5-2=(7-5)-2=0$
- In APL, associate to right

$$
7-5-2=7-(5-2)=4
$$

Example

- What is the result for:

$$
3+4 * 5+6
$$

Example

- What is the value of:

$$
7-5-2
$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity
- Not the only sources of ambiguity

