

## Simple Implementation Background

type term = Variable of string
| Const of (string * term list)
let rec subst var_name residue term = match term with Variable name ->
if var_name = name then residue else term
| Const (c, tys) ->
Const (c, List.map (subst var_name residue) tys);;

## Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCAML
- Can use a simplified version of algorithm
- Logic Programming - Prolog
- Simple parsing


## Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables


## Unification Problem

Given a set of pairs of terms ("equations")

$$
\left\{\left(\mathrm{s}_{1}, \mathrm{t}_{1}\right),\left(\mathrm{s}_{2}, \mathrm{t}_{2}\right), \ldots,\left(\mathrm{s}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)\right\}
$$

(the unification problem) does there exist a substitution $\sigma$ (the unification solution) of terms for variables such that

$$
\sigma\left(\mathrm{s}_{\mathrm{i}}\right)=\sigma\left(\mathrm{t}_{\mathrm{i}}\right),
$$

for all $i=1, \ldots, n$ ?

## Unification Algorithm

- Let $\mathrm{S}=\left\{\left(\mathrm{s}_{1}=\mathrm{t}_{1}\right),\left(\mathrm{s}_{2}=\mathrm{t}_{2}\right), \ldots,\left(\mathrm{s}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}\right)\right\}$ be a unification problem.
- Case $S=\{ \}$ : Unif(S) = Identity function (i.e., no substitution)
- Case $S=\{(\mathrm{s}, \mathrm{t})\} \cup \mathrm{S}^{\prime}$ : Four main steps


## Unification Algorithm

Delete: if $s=t$ (they are the same term) then $\operatorname{Unif}(S)=\operatorname{Unif}\left(S^{\prime}\right)$
Decompose: if $\mathrm{s}=\mathrm{f}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)$ and $t=f\left(r_{1}, \ldots, r_{m}\right)($ same $f$, same $m!)$, then $\operatorname{Unif}(\mathrm{S})=\operatorname{Unif}\left(\left\{\left(\mathrm{q}_{1}, \mathrm{r}_{1}\right), \ldots,\left(\mathrm{q}_{\mathrm{m}}, \mathrm{r}_{\mathrm{m}}\right)\right\} \cup \mathrm{S}^{\prime}\right)$

- Orient: if $\mathrm{t}=\mathrm{x}$ is a variable, and s is not a variable, Unif(S) $=$ Unif $\left(\{(x=s)\} \cup S^{\prime}\right)$


## Tricks for Efficient Unification

- Don' t return substitution, rather do it incrementally
- Make substitution be constant time
- Requires implementation of terms to use mutable structures (or possibly lazy structures)
- We won't discuss these


## Example

- $x, y, z$ variables, $f, g$ constructors
- $S=\{(f(x)=f(g(f(z), y))),(g(y, y)=x)\}$ is nonempty
- Unify $\{(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y}))),(\mathrm{g}(\mathrm{y}, \mathrm{y})=\mathrm{x})\}=$ ?


## Unification Algorithm

Eliminate: if $s=x$ is a variable, and $x$ does not occur in $t$ (the occurs check), then

- Let $\varphi=\{\mathrm{x} \rightarrow \mathrm{t}\}$
- Let $\psi=\operatorname{Unif}\left(\varphi\left(S^{\prime}\right)\right)$
- $\operatorname{Unif}(\mathrm{S})=\{x \rightarrow \psi(\mathrm{t})\}$ ○ $\psi$
- Note: $\{x \rightarrow a\}$ o $\{y \rightarrow b\}=$
$\{y \rightarrow(\{x \rightarrow a\}(b))\} \circ\{x \rightarrow a\}$ if $y$ not in a


## Example

- $x, y, z$ variables, $f, g$ constructors
- Unify $\{(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y}))),(\mathrm{g}(\mathrm{y}, \mathrm{y})=\mathrm{x})\}=$ ?


## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: $(g(y, y)=x)$
- Unify $\{(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y}))),(\mathrm{g}(\mathrm{y}, \mathrm{y})=\mathrm{x})\}=$ ?


## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: $(g(y, y))=x)$
- Orient: $(x=g(y, y))$
- Unify $\{(f(x)=f(g(f(z), y))),(g(y, y)=x)\}=$ Unify $\{(f(x)=f(g(f(z), y))),(x=g(y, y))\}$ by Orient


## Example

$x, y, z$ variables, $f, g$ constructors

- $\{(f(x)=f(g(f(z), y))),(x=g(y, y))\}$ is nonempty
- Unify $\{(f(x)=f(g(f(z), y))),(x=g(y, y))\}=$ ?


## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: $(x=g(y, y))$
- Eliminate $x$ with substitution $\{x \rightarrow g(y, y)\}$
- Check: $x$ not in $g(y, y)$
- Unify $\{(f(x)=f(g(f(z), y))),(x=g(y, y))\}=$ ?


## Example

- $x, y, z$ variables, f,g constructors
- Pick a pair: $(x=g(y, y))$
- Eliminate $x$ with substitution $\{x \rightarrow g(y, y)\}$
- Unify $\{(f(x)=f(g(f(z), y))),(x=g(y, y))\}=$ Unify $\{(f(g(y, y))=f(g(f(z), y)))\}$ $0\{x \rightarrow g(y, y)\}$


## Example

- $x, y, z$ variables, $f, g$ constructors
- Unify $\{(\mathrm{f}(\mathrm{g}(\mathrm{y}, \mathrm{y}))=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y})))\}$

$$
o\{x \rightarrow g(y, y)\}=?
$$

## Example

x,y,z variables, f,g constructors

- Pick a pair: $(f(g(y, y))=f(g(f(z), y)))$
- Unify $\{(f(g(y, y))=f(g(f(z), y)))\}$

$$
o\{x \rightarrow g(y, y)\}=?
$$

## Example

- x,y,z variables, f,g constructors
- $\{(g(y, y)=g(f(z), y))\}$ is non-empty
- Unify $\{(g(y, y)=g(f(z), y))\}$ $o\{x \rightarrow g(y, y)\}=$ ?


## Example

- x,y,z variables, f,g constructors
- $\{(f(g(y, y))=f(g(f(z), y)))\}$ is non-empty
- Unify $\{(\mathrm{f}(\mathrm{g}(\mathrm{y}, \mathrm{y}))=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y})))\}$ o $\{x \rightarrow g(y, y)\}=$ ?


## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: $(f(g(y, y))=f(g(f(z), y)))$
- Decompose: $(\mathrm{f}(\mathrm{g}(\mathrm{y}, \mathrm{y}))=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y})))$
becomes $\{(g(y, y)=g(f(z), y))\}$
- Unify $\{(f(g(y, y))=f(g(f(z), y)))\}$ o $\{x \rightarrow g(y, y)\}=$
Unify $\{(g(y, y)=g(f(z), y))\} \circ\{x \rightarrow g(y, y)\}$

10/15/14

## Example

- x,y,z variables, f,g constructors
- Pick a pair: $(g(y, y)=g(f(z), y))$
- Unify $\{(g(y, y)=g(f(z), y))\}$

$$
\text { o }\{x \rightarrow g(y, y)\}=\text { ? }
$$

## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: $(f(g(y, y))=f(g(f(z), y)))$
- Decompose: $(g(y, y))=g(f(z), y))$ becomes $\{(y=f(z)) ;(y=y)\}$
- Unify $\{(g(y, y)=g(f(z), y))\}$ o $\{x \rightarrow g(y, y)\}=$ Unify $\{(\mathrm{y}=\mathrm{f}(\mathrm{z})) ;(\mathrm{y}=\mathrm{y})\} \circ\{\mathrm{x} \rightarrow \mathrm{g}(\mathrm{y}, \mathrm{y})\}$


## Example

- $x, y, z$ variables, $f, g$ constructors
- $\{(y=f(z)) ;(y=y)\}$ o $\{x \rightarrow g(y, y)$ is nonempty
- Unify $\{(\mathrm{y}=\mathrm{f}(\mathrm{z})) ;(\mathrm{y}=\mathrm{y})\} \circ\{\mathrm{x} \rightarrow \mathrm{g}(\mathrm{y}, \mathrm{y})\}=$ ?


## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: $(y=f(z))$
- Eliminate $y$ with $\{y \rightarrow f(z)\}$
- Unify $\{(\mathrm{y}=\mathrm{f}(\mathrm{z})) ;(\mathrm{y}=\mathrm{y})\} \circ\{\mathrm{x} \rightarrow \mathrm{g}(\mathrm{y}, \mathrm{y})\}=$ Unify $\{(f(z)=f(z))\}$ $\circ\{y \rightarrow f(z)\} \circ\{x \rightarrow g(y, y)\}=$ Unify $\{(f(z)=f(z))\}$ $o\{y \rightarrow f(z) ; x \rightarrow g(f(z), f(z))\}$


## Example

- $x, y, z$ variables, $f, g$ constructors
- Unify $\{(\mathrm{y}=\mathrm{f}(\mathrm{z})) ;(\mathrm{y}=\mathrm{y})\} \circ\{\mathrm{x} \rightarrow \mathrm{g}(\mathrm{y}, \mathrm{y})\}=$ ?


## Example

- x,y,z variables, f,g constructors
- Pick a pair: ( $y=f(z)$ )
- Unify $\{(y=f(z)) ;(y=y)\}$ o $\{x \rightarrow g(y, y)\}=$ ?


## Example

- x,y,z variables, f,g constructors
- Unify $\{(f(z)=f(z))\}$
$\mathrm{o}\{\mathrm{y} \rightarrow \mathrm{f}(\mathrm{z}) ; \mathrm{x} \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{f}(\mathrm{z}))\}=$ ?


## Example

- $x, y, z$ variables, $f, g$ constructors
- $\{(\mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}))\}$ is non-empty
- Unify $\{(\mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}))\}$

$$
\mathrm{o}\{\mathrm{y} \rightarrow \mathrm{f}(\mathrm{z}) ; \mathrm{x} \rightarrow \mathrm{~g}(\mathrm{f}(\mathrm{z}), \mathrm{f}(\mathrm{z}))\}=?
$$

## Example

- $x, y, z$ variables, $f, g$ constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify $\{(\mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}))\}$
$o\{y \rightarrow f(z) ; x \rightarrow g(f(z), f(z))\}=$
Unify $\} \circ\{y \rightarrow f(z) ; x \rightarrow g(f(z), f(z))\}$


## Example

- x,y,z variables, f,g constructors
- $\}$ is empty
- Unify $\}=$ identity function
- Unify $\} \circ\{y \rightarrow f(z) ; x \rightarrow g(f(z), f(z))\}=$

$$
\{y \rightarrow f(z) ; x \rightarrow g(f(z), f(z))\}
$$

## Example

- Unify $\{(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{f}(\mathrm{z}), \mathrm{y}))),(\mathrm{g}(\mathrm{y}, \mathrm{y})=\mathrm{x})\}=$ $\{y \rightarrow f(z) ; x \rightarrow g(f(z), f(z))\}$

$$
\begin{aligned}
f(\quad x \quad) & =f(g(f(z), y)) \\
\rightarrow f(g(f(z), f(z))) & =f(g(f(z), f(z)))
\end{aligned}
$$

$g(y, y)=\quad x$
$\rightarrow g(f(z), f(z))=g(f(z), f(z))$

Example of Failure: Decompose

- Unify $\{(f(x, g(y))=f(h(y), x))\}$
- Decompose: $(f(x, g(y))=f(h(y), x))$
- = Unify $\{(x=h(y)),(g(y)=x)\}$
- Orient: $(g(y)=x)$
- = Unify $\{(x=h(y)),(x=g(y))\}$
- Eliminate: ( $x=h(y)$ )
- Unify $\{(\mathrm{h}(\mathrm{y}), \mathrm{g}(\mathrm{y}))\}$ o $\{\mathrm{x} \rightarrow \mathrm{h}(\mathrm{y})\}$
- No rule to apply! Decompose fails!


Modified from "Modern Compiler Implementation in ML", by Andrew Appel

## Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Example of Failure: Occurs Check

- Unify $\{(\mathrm{f}(\mathrm{x}, \mathrm{g}(\mathrm{x}))=\mathrm{f}(\mathrm{h}(\mathrm{x}), \mathrm{x}))\}$
- Decompose: $(f(x, g(x))=f(h(x), x))$
- = Unify $\{(x=h(x)),(g(x)=x)\}$
- Orient: $(g(y)=x)$
- = Unify $\{(x=h(x)),(x=g(x))\}$
- No rules apply.


## Meta-discourse

- Language Syntax and Semantics
- Syntax
- Regular Expressions, DFSAs and NDFSAs
- Grammars
- Semantics
- Natural Semantics
- Transition Semantics

Syntax of English Language

- Pattern 1

| Subject | Verb |
| :--- | :--- |
| David | sings |
| The dog | barked |
| Susan | yawned |

- Pattern 2

| Subject | Verb | Direct Object |
| :--- | :--- | :--- |
| David | sings | ballads |
| The professor | wants | to retire |
| The jury | found | the defendant guilty |

10/15/14

## Elements of Syntax

- Character set - previously always ASCII, now often 64 character sets
- Keywords - usually reserved
- Special constants - cannot be assigned to
- Identifiers - can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)


## Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)


## Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata - covered in automata theory


## Elements of Syntax

- Expressions
if ... then begin ... ; ... end else begin ... ; ... end
- Type expressions
typexpr $_{1}$-> typexpr $_{2}$
- Declarations (in functional languages)
let pattern ${ }_{1}=$ expr $_{1}$ in expr
- Statements (in imperative languages)
$a=b+c$
- Subprograms
let pattern $_{1}=$ let rec inner $=\ldots$ in expr

10/15/14

## Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
- Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language) - Specification Technique: Regular Expressions
- Parsing: Convert a list of tokens into an abstract syntax tree
- Specification Technique: BNF Grammars


## Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

