Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Mapping Functions Over Lists

\# let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x-> x-1) fib6;;
: int list $=[12 ; 7 ; 4 ; 2 ; 1 ; 0 ; 0]$

Mapping Recursion

One common form of structural recursion applies a function to each element in the structure
\# let rec doubleList list = match list with [] -> []
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = $[4 ; 6 ; 8]$

Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = $[4 ; 6 ; 8]$
- Same function, but no explicit rec

Your turn now

Write a function
make_app : (('a -> 'b) * ’a) list -> 'b list that takes a list of function - input pairs and gives the result of applying each function to its argument. Use map, no explicit recursion.
let make_app I =

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with

val sumList : int list $->$ int $=$ <fun>
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list = match list with
[]-> 1|x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;3;4];;
- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> 0|| $\mathrm{x}:$:xs -> x + sumList xs;;
val sumList : in list -> int = <fun>
\# sumList [2;3;4];;

- : int = 9

Base Case

\# let rec multhist list = match list with
[] -> 1 x: :xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;3;4];;

- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> 0| x::xs -> x + sumList xs;
val sumList : int list $->$ int $=$ <fun>
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list = match list with
[] -> 1| x: :xs -> x * multList xs; ;
val multList : int list -> int = <fun>
\# multList [2;3;4];;
- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> $0 \mid \mathrm{x}:: \mathrm{xs}->\mathrm{X}+$ SumList xs; ;
val sumList : int list -> int $=<$ fun $>$
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list = match list with
[] -> 1| x: :xs -> x * multList xs;
val multList : int list -> int = <fun>
\# multList [2;3;4];;
- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] -> $0 \mid \mathrm{x}:: \mathrm{xs}->\mathrm{x}+$ sumList xs ; ;
val sumList : int list -> int $=<$ fun >
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list $=$ match list with
[] -> $1 \mid x:: x s ~->区$ multList x; ;
val multList : int list -> int = <fun>
\# multList [2;3;4];;
- : int = 24

Folding Functions over Lists

How are the following functions similar?
\# let rec sumList list = match list with
[] ->0| x::xs -> $\mathrm{x}+$ Rec value
val sumList : int list -> int =<tun>
\# sumList [2;3;4];;

- : int = 9
\# let rec multList list $=$ match list with
[] -> $1 \mid x:: x s ~->区 *$ Rec value;
val multList : int list -> int = <fun>
\# multList [2;3;4];;
- : int = 24R

Recursing over lists

\# let rec fold_right f list $\mathrm{b}=$
match list
with [] -> b
The Primitive
| (x : : xs) -> fx (fold_right f xs b);, Recursion Fairy
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;
therehi- : unit $=()$

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun x-> fun rv -> x * rv)
list 1;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48

Encoding Recursion with Fold

\# let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> la list = <fun>
Base Case
Operation
Recursive Call
\# let append list1 list2
fold_right (fun x rv-> x :: rv) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
\# append [1;2;3] [4;5;6];;

- : int list = [1; 2; 3; 4; 5; 6]

Your turn now

Try Problem 1 on ML2

Question

let rec length I = match I with [] -> 0 | (a :: bs) -> 1 + length bs

- How do you write length with fold_right, but no explicit recursion?

Question

let rec length I =

match I with [] -> 0

| (a :: bs) -> 1 + length bs

- How do you write length with fold_right, but no explicit recursion?
let length list =
List.fold_right (fun x -> fun n -> $\mathrm{n}+1$) list 0

Map from Fold

\# let map f list = fold_right (fun x-> fun $y->f x:: y$) list [];
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
\# map ((+)1) [1;2;3];;

- : int list = [2; 3; 4]
- Can you write fold_right (or fold_left) with just map? How, or why not?

Iterating over lists

\# let rec fold_left falist =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit $=()$

Encoding Tail Recursion with fold_left

\# let prod list = let rec prod_aux I acc = match I with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list:1;;
val prod : int list $->$ int $=$ <fun>
Init Acc Value Recursive Call Operation
\# let prod list =
List.fold_left (fun acc y -> acc * y) 1 list;;
val prod: int list -> int $=$ <fun>
\# prod [4;5;6];;

- : int =120

Question

let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n | (a :: bs) -> length_aux bs ($\mathrm{n}+1$) in length_aux I 0

- How do you write length with fold_left, but no explicit recursion?

Question

let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n | (a :: bs) -> length_aux bs ($\mathrm{n}+1$)
in length_aux I 0

- How do you write length with fold_left, but no explicit recursion?
let length list =
List.fold_left (fun n -> fun x -> n + 1) 0 list
9/23/15

Folding

\# let rec fold_left falist = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left fa $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f\right.\right.\right.$ a $\left.\left.\left.x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right f list $b=$ match list
with [] -> b | (x :: xs) -> fx (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

Recall

\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

What is its running time?

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Tail Recursion - Example

\# let rec rev_aux list revlist = match list with [] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

- What is its running time?

Comparison

- poor_rev [1,2,3] =
- (poor_rev [2,3]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- [3,2] @ [1] =
- $3::([2]$ @ [1]) =
- 3 :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

- $\operatorname{rev}[1,2,3]=$
- rev_aux [1,2,3] [] =
- rev_aux $[2,3][1]=$
- rev_aux [3] [2,1] =
- rev_aux [] [3,2,1] = [3,2,1]

Folding - Tail Recursion

- \# let rev list =
fold_left

> (fun I -> fun x -> x :: I) //comb op
[] //accumulator cell
list

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Continuations

- A programming technique for all forms of "non-local" control flow:
- non-local jumps
- exceptions
- general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO

Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an extra argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

Continuation Passing Style

- Writing procedures such that all procedure calls take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)

Continuation Passing Style

- A compilation technique to implement nonlocal control flow, especially useful in interpreters.
- A formalization of non-local control flow in denotational semantics
- Possible intermediate state in compiling functional code

Why CPS?

- Makes order of evaluation explicitly clear
- Allocates variables (to become registers) for each step of computation
- Essentially converts functional programs into imperative ones
- Major step for compiling to assembly or byte code
- Tail recursion easily identified
- Strict forward recursion converted to tail recursion
- At the expense of building large closures in heap

Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline());
val report : int -> unit = <fun>
- Simple function using a continuation:
\# let addk a b k = k (a + b);;
val addk : int -> int -> (int -> 'a) -> 'a = <fun>
\# addk 2220 report;;
2
- : unit = ()

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
\# let subk x y k = k(x + y) ;;
val subk : int -> int -> (int -> 'a) -> 'a = <fun>
\# let eqk x y $k=k(x=y)$;;
val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk x y k $=k(x * y)$;
val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

Try Problem 5 on MP4 Try modk

Nesting Continuations

\＃let add＿three x y z＝（x＋y）＋z；；
val add＿three ：int－＞int－＞int－＞int＝＜fun＞ \＃let add＿three $x y z=$ let $p=x+y$ in $p+z ;$ ； val add＿three ：int－＞int－＞int－＞int＝＜fun＞ \＃let add＿three＿k x y z k＝ addk x y（fun p－＞addk p z⿴囗⿱一一 $)$ ；；
val add＿three＿k ：int－＞int－＞int－＞（int－＞＇a）
－＞＇a＝＜fun＞

add_three: a different order

- \# let add_three x y z = x + (y + z);;
- How do we write add_three_k to use a different order?
- let add_three_k x y z k =

Your turn now

Try Problem 6 on MP4

Recursive Functions

- Recall:

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial $(\mathrm{n}-1)$;;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120

Recursive Functions

\# let rec factorial $\mathrm{n}=$
let $b=(n=0)$ in (* First computation *)
if b then 1 ($*$ Returned value $*$)
else let $\mathrm{s}=\mathrm{n}-1$ in (* Second computation *)
let $r=$ factorial s in (* Third computation *)
$\mathrm{n} * \mathrm{r}$ in (* Returned value *) ;;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120

Recursive Functions

\# let rec factorialk $\mathrm{nk}=$ eqk n 0
(fun b -> (* First computation *)
if b then $k 1$ (* Passed value *)
else subk n 1 (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk n r k))) (* Passed value *)
val factorialk : int -> int = <fun>
\# factorialk 5 report;;
120

- : unit $=()$

Recursive Functions

- To make recursive call, must build intermediate continuation to
- take recursive value: r
- build it to final result: n * r - And pass it to final continuation:
- times nrk = k (n * r)

Example: CPS for length

let rec length list $=$ match list with [] -> 0 | (a :: bs) -> 1 + length bs
What is the let-expanded version of this?

Example: CPS for length

let rec length list $=$ match list with [] $->0$

$$
\text { | (a :: bs) -> } 1 \text { + length bs }
$$

What is the let-expanded version of this? let rec length list = match list with [] -> 0

$$
\text { | (a :: bs) -> let r1 = length bs in } 1+r 1
$$

Example: CPS for length

\#let rec length list = match list with [] -> 0

$$
\text { | (a :: bs) -> let r1 = length bs in } 1+r 1
$$

What is the CSP version of this?

Example: CPS for length

\#let rec length list $=$ match list with [] -> 0

$$
\text { | (a :: bs) -> let r1 = length bs in } 1+r 1
$$

What is the CSP version of this?
\#let rec lengthk list $k=$ match list with [] -> k 0
| x :: xs -> lengthk xs (fun r-> addk r 1 k) ;;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun> \# lengthk [2;4;6;8] report;;
4

- : unit = ()

Your turn now

Try Problem 8 on MP4

CPS for Higher Order Functions

- In CPS, every procedure / function takes a continuation to receive its result
- Procedures passed as arguments take continuations
- Procedures returned as results take continuations
- CPS version of higher-order functions must expect input procedures to take continuations

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b = p x in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b=px in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk pk I k =

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b=px in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk pk I k = match I with [] -> true

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b=px in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk pk I k = match I with [] -> k true

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b = p x in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this? \#let rec allk pk I k = match I with [] -> k true | (x :: xs) ->

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b = p x in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this? \#let rec allk pk I k = match I with [] -> k true | (x :: xs) -> pk x

Example: all

\#let rec all p I = match I with [] -> true
| (x :: xs) -> let b = p x in
if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this? \#let rec allk pk I k = match I with [] -> k true
| (x :: xs) -> pk x
(fun $b->$ if b then else
)

Example: all

\#let rec all p I = match I with [] -> true

$$
\text { (} \mathrm{x}:: \mathrm{xs} \text {) -> let } \mathrm{b}=\mathrm{p} x \text { in }
$$

if b then all p xs else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk pk l k = match I with [] -> k true
| (x :: xs) -> pk x
(fun b-> if b then allk pk xs kelse k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list -> (bool -> 'b) -> 'b = <fun>

Terms

- A function is in Direct Style when it returns its result back to the caller.
- A Tail Call occurs when a function returns the result of another function call without any more computations (eg tail recursion)
- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- Instead of returning the result to the caller, we pass it forward to another function.

Terminology

- Tail Position: A subexpression s of expressions e, such that if evaluated, will be taken as the value of e
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$

Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if $(h x)$ then (fun $x->f x$) else $(g(x+x))$

Not available

CPS Transformation

- Step 1: Add continuation argument to any function definition:
- let $\mathrm{f} \arg =\mathrm{e} \Rightarrow$ let f arg $\mathrm{k}=\mathrm{e}$
- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned:
- return $a \Rightarrow k a$
- Assuming a is a constant or variable.
- "Simple" = "No available function calls."

CPS Transformation

- Step 3: Pass the current continuation to every function call in tail position
- return farg $\Rightarrow \mathrm{f}$ arg k
- The function "isn' t going to return," so we need to tell it where to put the result.

CPS Transformation

- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
- return op (f arg) \Rightarrow f arg (fun r -> k(op r))
- op represents a primitive operation
- return $\mathrm{f}(\mathrm{g} \arg) \Rightarrow \mathrm{g}$ arg (fun r-> frk)

Example

Before:

let rec add_list Ist = match Ist with

$$
\begin{aligned}
& \text { [] -> } 0 \\
& \mid 0 \text { :: xs -> add_list xs } \\
& \mid x \text { :: xs -> (+) x } \\
& \text { (add_list xs);; }
\end{aligned}
$$

After:
let rec add_listk Ist k = (* rule 1 *)
match Ist with
| []-> k 0 (* rule 2 *)
0 :: xs -> add_listk xs k (* rule 3 *)
| x :: xs -> add_listk xs
(fun r-> k ((+) x r)); ;
(* rule 4 *)

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> x + sum xs ;;
val sum : int list $->$ int $=<$ fun $>$

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>
\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> let r1 = sum $x s$ in $x+r 1 ; ;$

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>
\# let rec sum list $=$ match list with [] -> 0
| $x:: x s$-> let $r 1=$ sum $x s$ in $x+r 1 ; ;$
val sum : int list -> int = <fun>
\# let rec sumk list $k=$ match list with [] -> $k 0$
| x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> x + sum xs ;;
val sum : int list -> int = <fun>
\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> let r1 = sum xs in $x+r 1 ; ;$
val sum : int list -> int = <fun>
\# let rec sumk list $k=$ match list with [] -> $k 0$
| x :: xs -> sumk xs (fun r1 -> addk x r1 k); ;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
\# sumk [2;4;6;8] report;;
20

- : unit = ()

Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
- Exceptions and exception handling
- Co-routines
- (pseudo, aka green) threads

Exceptions - Example

\# exception Zero;;

exception Zero
\# let rec list_mult_aux list = match list with [] -> 1
| x :: xs ->
if $x=0$ then raise Zero
else x * list_mult_aux xs;;
val list_mult_aux : int list -> int $=$ <fun>

Exceptions - Example

\# let list_mult list =
try list_mult_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
\# list_mult [3;4;2];;

- : int = 24
\# list_mult [7;4;0];;
- : int = 0
\# list_mult_aux [7;4;0];;
Exception: Zero.

Exceptions

- When an exception is raised
- The current computation is aborted
- Control is "thrown" back up the call stack until a matching handler is found
- All the intermediate calls waiting for a return values are thrown away

Implementing Exceptions

\# let multkp $\mathrm{m} \mathrm{n} \mathrm{k}=$

$$
\text { let } \mathrm{r}=\mathrm{m} * \mathrm{n} \text { in }
$$

(print_string "product result: "; print_int r; print_string "\n"; kr); ;
val multkp : int -> int -> (int -> 'a) -> 'a = <fun>

Implementing Exceptions

\# let rec list_multk_aux list k kexcp = match list with [] -> k 1
|x:: xs -> if $x=0$ then kexcp 0 else list_multk_aux xs
(fun r -> multkp x r k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)
-> 'a = <fun>
\# let rec list_multk list $k=$ list_multk_aux list k k;; val list_multk : int list -> (int -> 'a) -> 'a = <fun>

Implementing Exceptions

\# list_multk [3;4;2] report;; product result: 2 product result: 8 product result: 24
24

- : unit = ()
\# list_multk [7;4;0] report;;
0
- : unit = ()

