Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $\mathrm{x}=\mathrm{e}$
- Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
- Update: $\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1}
$\{x \rightarrow 2, y \rightarrow 3, a \rightarrow " h i "\}+\{y \rightarrow 100, b \rightarrow 6\}$
$=\{x \rightarrow 2, y \rightarrow 3, a \rightarrow$ "hi", $b \rightarrow 6\}$

Evaluating expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in $\rho(\rho(\mathrm{v}))$
- To evaluate uses of + , , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x=e 1$ in e2
- Eval e1 to v, eval e2 using $\{x \rightarrow v\}+\rho$

Eval of App with Closures in Ocaml

1. Evaluate the right term to values, $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
2. In environment ρ, evaluate left term to closure, $\mathrm{c}=\left\langle\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{b}, \rho\right\rangle$
3. Match ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) variables in (first) argument with values $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
4. Update the environment ρ to $\rho^{\prime}=\left\{\mathrm{x}_{1} \rightarrow \mathrm{v}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{v}_{\mathrm{n}}\right\}+\rho$
5. Evaluate body bin environment ρ^{\prime}

Match Expressions

\# let triple_to_pair triple =
match triple
with $(0, x, y)->(x, y)$
$(x, 0, y)->(x, y)$
(x, y, \quad) $)->(x, y) ; ;$
-Each clause: pattern on left, expression on right - Each x, y has scope of only its clause

- Use first matching clause
val triple_to_pair : int * int * int -> int * int = <fun>

Higher Order Functions

- A function is higher-order if it takes a function as an argument or returns one as a result
- Example:
\# let compose $\mathrm{f} \mathrm{g}=$ fun $\mathrm{x}->\mathrm{f}(\mathrm{gx})$;;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>

- The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a higher order type because of ('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

Thrice

- Recall:
\# let thrice $\mathrm{fx}=\mathrm{f}(\mathrm{f}(\mathrm{f} \mathrm{x})$); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
- How do you write thrice with compose?

Thrice

- Recall:
\# let thrice $\mathrm{fx}=\mathrm{f}(\mathrm{f}(\mathrm{f} x)$); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
- How do you write thrice with compose?
\# let thrice $\mathrm{f}=$ compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
- Is this the only way?

Partial Application

\# (+);;

- : int -> int -> int = <fun>
\# (+) 2 3;;
- : int = 5
\# let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
\# plus_two 7;;
- : int = 9
- Patial application also called sectioning

Lambda Lifting

- You must remember the rules for evaluation when you use partial application
\# let add_two = (+) (print_string "test\n"; 2);; test
val add_two : int -> int = <fun>
\# let add2 $=$ ($*$ lambda lifted ${ }^{*}$)
fun x-> (+) (print_string "test\n"; 2) x; ;
val add2 : int -> int = <fun>

Lambda Lifting

\# thrice add_two 5;;

- : int = 11
\# thrice add2 5;;
test
test
test
- : int = 11
- Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied

Partial Application and "Unknown Types"

- Recall compose plus_two: \# let f1 = compose plus_two;;
val f1: ('_a -> int) -> '_a -> int = <fun>
- Compare to lambda lifted version:
\# let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
- What is the difference?

Partial Application and＂Unknown Types＂

－＇＿a can only be instantiated once for an expression \＃f1 plus＿two；；
－：int－＞int $=<$ fun $>$
\＃f1 List．length；；
Characters 3－14：
f1 List．length；； ヘヘヘヘヘヘヘヘヘヘヘ

This expression has type＇a list－＞int but is here used with type int－＞int

Partial Application and "Unknown Types"

'a can be repeatedly instantiated
\# f2 plus_two;;

- : int -> int = <fun>
\# f2 List.length;;
- : '_a list -> int = <fun>

Recursive Functions

\# let rec factorial $\mathrm{n}=$ if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ; val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120
\# (* rec is needed for recursive function declarations *)

Recursion Example

Compute n^{2} recursively using:

$$
\mathrm{n}^{2}=(2 * n-1)+(n-1)^{2}
$$

\# let rec nthsq $n=$ (* rec for recursion *) match n (* pattern matching for cases *) with $0->0 \quad$ (* base case *)
$\mid \mathrm{n}->(2$ * $\mathrm{n}-1) \quad$ (* recursive case *)

+ nthsq ($\mathrm{n}-1$); $; \quad$ (* recursive call *)
val nthsq : int -> int = <fun>
\# nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ; ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

Lists

- First example of a recursive datatype (aka algebraic datatype)
- Unlike tuples, lists are homogeneous in type (all elements same type)

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, x is tail list, :: called "cons"
- Syntactic sugar: [x] == x :: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = $13 ; 8 ; 5 ; 3 ; 2 ; 1 ; 1]$
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；；
ヘヘヘ
This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

- 3 is invalid because of last pair

Functions Over Lists

\# let rec double_up list = match list with [] -> [] (* pattern before ->, expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun> \# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; $8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1$; $1 ; 1 ; \overline{1}]$

Functions Over Lists

\# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
\# poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

- Problem: write code for the length of the list
- How to start?
let length I =

Question: Length of list

- Problem: write code for the length of the list
- How to start?
let rec length I = match I with

Question: Length of list

- Problem: write code for the length of the list - What patterns should we match against?
let rec length I =
match I with

Question: Length of list

- Problem: write code for the length of the list - What patterns should we match against?
let rec length I =
match I with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is empty?
let rec length I =
match I with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is not empty?
let rec length I =
match I with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is not empty?
let rec length I =
match I with [] -> 0
| (a :: bs) -> 1 + length bs

Your turn now

Try Problem 1 on MP2

Same Length

- How can we efficiently answer if two lists have the same length?

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

\# let rec length list = match list with [] -> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list xs

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

\# let rec double_up list = match list with [] -> []
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Question

- How do you write length with forward recursion?
let rec length I =

Question

- How do you write length with forward recursion?
let rec length I = match I with [] ->
| (a :: bs) ->

Question

- How do you write length with forward recursion?
let rec length I = match I with [] ->
| (a :: bs) -> length bs

Question

- How do you write length with forward recursion?
let rec length I =
match I with [] -> 0
| (a :: bs) -> 1 + length bs

Your turn now

Try Problem 2 on MP3

An Important Optimization

- When a function call is made,

Normal call
 the return address needs to be saved to the stack so we know to where to return when the call is finished

- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?

An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Example of Tail Recursion

\# let rec prod I =
match I with [] -> 1
| (x :: rem) -> x * prod rem;;
val prod : int list $->$ int $=<$ fun $>$
\# let prod list = let rec prod_aux I acc = match I with [] -> acc | (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *) in prod_aux list 1;;
val prod : int list -> int = <fun>

Question

- How do you write length with tail recursion? let length I =

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$
in

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] ->
| (a :: bs) ->
in

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n
| (a :: bs) ->
in

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n
| (a :: bs) -> length_aux
in

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n
| (a :: bs) -> length_aux bs
in

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n
| (a :: bs) -> length_aux bs ($\mathrm{n}+1$)
in

Question

- How do you write length with tail recursion? let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n
| (a :: bs) -> length_aux bs ($\mathrm{n}+1$) in length_aux I 0

Your turn now

Try Problem 4 on MP3

Mapping Recursion

One common form of structural recursion applies a function to each element in the structure
\# let rec doubleList list = match list with [] -> []
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = $[4 ; 6 ; 8]$

Mapping Functions Over Lists

\# let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x-> x-1) fib6;;
: int list = $12 ; 7 ; 4 ; 2 ; 1 ; 0 ; 0]$

Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = $[4 ; 6 ; 8]$
- Same function, but no rec

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

Folding Functions over Lists

How are the following functions similar?
\# let rec sumlist list = match list with
[] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
\# sumlist [2;3;4];;

- : int = 9
\# let rec prodlist list = match list with

val prodlist : int list -> int = <fun>
\# prodlist [2;3;4];;
- : int = 24

Iterating over lists

\# let rec fold_right flist $\mathrm{b}=$
match list
with [] -> b
| (x :: xs) -> fx (fold_right f xs b);;
val fold_right: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right (fun s -> fun () -> print_string s) ["hi"; "there"]
();;
therehi- : unit = ()

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun x -> fun $\mathrm{p}->\mathrm{x}$ * p)
list 1;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48

Encoding Recursion with Fold

\# let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case
Operation Recursive Call
\# let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
\# append [1;2;3] [4;5;6];;

- : int list = [1; 2; 3; 4; 5; 6]

Question

let rec length I = match I with [] -> 0
| (a :: bs) -> 1 + length bs

- How do you write length with fold_right, but no explicit recursion?

Question

let rec length I =

match I with [] -> 0

| (a :: bs) -> 1 + length bs

- How do you write length with fold_right, but no explicit recursion?
let length list =
List.fold_right (fun x -> fun n -> $\mathrm{n}+1$) list 0

Map from Fold

\# let map f list =
fold_right (fun x-> fun $y->f x:: y$) list [];
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
\# map ((+)1) [1;2;3];;

- : int list = [2; 3; 4]
- Can you write fold_right (or fold_left) with just map? How, or why not?

Iterating over lists

\# let rec fold_left falist =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit $=()$

Encoding Tail Recursion with fold_left

\# let prod list = let rec prod_aux I acc = match I with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
in prod_aux list:1;;
val prod : int list $->$ int $=$ <fun>
Init Acc Value Recursive Call Operation
\# let prod list =
List.fold_left (fun acc y -> acc * y) 1 list;;
val prod: int list -> int $=$ <fun>
\# prod [4;5;6];;

- : int =120

Question

let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n | (a :: bs) -> length_aux bs ($n+1$) in length_aux I 0

- How do you write length with fold_left, but no explicit recursion?

Question

let length I =
let rec length_aux list $\mathrm{n}=$ match list with [] -> n | (a :: bs) -> length_aux bs ($\mathrm{n}+1$)
in length_aux I 0

- How do you write length with fold_left, but no explicit recursion?
let length list =
List.fold_left (fun n -> fun x -> n + 1) 0 list
9/8/15

Folding

\# let rec fold_left falist = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left fa $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f\right.\right.\right.$ a $\left.\left.\left.x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right f list $b=$ match list
with [] -> b | (x :: xs) -> fx (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

Recall

\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

What is its running time?

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Tail Recursion - Example

\# let rec rev_aux list revlist = match list with [] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

- What is its running time?

Comparison

- poor_rev [1,2,3] =
- (poor_rev [2,3]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- [3,2] @ [1] =
- $3::([2]$ @ [1]) =
- 3 :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

- $\operatorname{rev}[1,2,3]=$
- rev_aux [1,2,3] [] =
- rev_aux $[2,3][1]$ =
- rev_aux [3] [2,1] =
- rev_aux [] [3,2,1] = [3,2,1]

Folding - Tail Recursion

- \# let rev list =
fold_left

> (fun I -> fun x -> x :: I) //comb op
[] //accumulator cell
list

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Continuation Passing Style

- A programming technique for all forms of "non-local" control flow:
- non-local jumps
- exceptions
- general conversion of non-tail calls to tail calls
- Essentially it's a higher-order function version of GOTO

Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

Example of Tail Recursion

\# let rec app fl $\mathrm{x}=$
match fl with [] -> x
| (f :: rem_fs) -> f (app rem_fs x)ii
val app: ('a -> 'a) list ->'a -> 'a = <fun>
\# let app fs x =
let rec app_aux fl acc=
match fl with [] -> acc
| (f :: rem_fs) -> app_aux rem_fs (fun z -> acc (f z))
in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

Continuation Passing Style

- Writing procedures so that they take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)

Example of Tail Recursion \& CSP

\# let app fs $\mathrm{x}=$ let rec app_aux flacc= match fl with [] -> acc
| (f :: rem_fs) -> app_aux rem_fs
(fun z -> acc (f z))
in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
\# let rec appk fl x k =
match fl with [] -> k x
| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;
val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

Continuation Passing Style

- A compilation technique to implement nonlocal control flow, especially useful in interpreters.
- A formalization of non-local control flow in denotational semantics

Terms

- A function is in Direct Style when it returns its result back to the caller.
- A Tail Call occurs when a function returns the result of another function call without any more computations (eg tail recursion)
- A function is in Continuation Passing Style when it passes its result to another function.
- Instead of returning the result to the caller, we pass it forward to another function.

Example

- Simple reporting continuation:
\# let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>
- Simple function using a continuation:
\# let plusk a b k = k (a + b)
val plusk : int -> int -> (int -> 'a) -> 'a = <fun> \# plusk 2022 report;;
42
- : unit = ()

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
\# let subk x y k = k(x + y) ;;
val subk : int -> int -> (int -> 'a) -> 'a = <fun>
\# let eqk x y $k=k(x=y) ;$;
val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk x y $=k(x * y)$;
val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

Nesting Continuations

\＃let add＿three x y z＝x＋y＋z；；
val add＿three ：int－＞int－＞int－＞int＝＜fun＞ \＃let add＿three $x y z=$ let $p=x+y$ in $p+z ;$ ； val add＿three ：int－＞int－＞int－＞int＝＜fun＞ \＃let add＿three＿k x y z k＝ addk x y（fun p－＞addk p z⿴囗⿱一内人）；；
val add＿three＿k ：int－＞int－＞int－＞（int－＞＇a）
－＞＇a＝＜fun＞

