
MP 9 – An Evaluator for PicoML
CS 421 – Fall 2011

Revision 1.4

Assigned November 15, 2011
Due November 29, 2011 23:59
Extension 48 hours (20% penalty)

1 Change Log
1.4 Changed the example for Problem 5 to one that doesn;t use Problem 6.

1.3 Corrected the type of eval dec, and added some clarifying terminology to problems concerning top-level dec-
larations.

1.2 Changed mp9int to picomlint everywhere, corrected subscript error in Problem 5 (monadic operators), cor-
rected truncated lines in the type definitions, added clarification to the example code in Problem 2.

1.1 Fixed the garbled mess concerning monadic operators (monop), changed the name (and input type) of unApply
to monApply and fixed the type of binApply.

1.0 Initial Release.

2 Overview
Previously, you created a lexer, a parser, and a type inferencer for PicoML. Finally, your hard work will pay off –
it is time to create an evaluator for PicoML programs. Lexing, parsing, and type inferencing will be taken care of
automatically (you have already implemented these parts in previous MPs.) Your evaluator can assume that its input
is correctly typed.

Your evaluator will be responsible for evaluating two kinds of things: declarations, and expressions. At top level,
your evaluator will be called on a declaration or an expression with an empty memory. It will recurse on the parts,
eventually returning the binding.

3 Types
For this assignment, one should note the difference between expressions and values. An expression is a syntax tree,
like 2 + (4 ∗ 3) or (3 < 4), whereas a value is a single object, like 14 or true. A value is the result of evaluating an
expression. Note that closures are values representing functions.

Recall that we represent PicoML programs with following OCaml types:

(* constants for PicoML *)
type const = Bool of bool | Int of int | Float of float | String of string

| Nil | Unit

(* Infixed binary operators for PicoML *)
type binop = Add | Sub | Mul | Div | Exp | FAdd | FSub | FMul | FDiv

| Concat | Cons | Comma | Eq | Less

(* Primitive unary operator in PicoML *)
type monop = Head | Tail | Print | Neg | Fst | Snd

1

(* expressions for PicoML *)
type exp =

| VarExp of string (* variables *)
| ConExp of const (* constants *)
| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)
| AppExp of exp * exp (* exp1 exp2 *)
| BinExp of binop * exp * exp (* exp1 % exp2

where % is a builtin binary operator *)
| MonExp of monop * exp (* % exp1

where % is a builtin monadic operator *)
| FunExp of string * exp (* fun x -> exp *)
| LetExp of string * exp * exp (* let x = exp1 in exp2 *)
| RecExp of string * string * exp * exp (* let rec f x = exp1 in exp2 *)
| RaiseExp of exp (* raise exp *)
| TryWithExp of exp * (int option * exp) * ((int option * exp) list)

(* try exp with n1 -> exp1 | ... | nm -> expm *)

(* Top-level declarations for PicoML *)
type toplvl = Anon of exp (* f 4;; *)

| TopLet of (string * exp) (* let f = ... ;; *)
| TopRec of (string * string * exp) (* let rec f x = ... ;; *)

With these, we form a PicoML abstract syntax tree. A PicoML AST will be the input to your evaluator. Now look
at the following types defined in Mp9common:

type memory = (string * value) list
and value =

Unitval | Boolval of bool
| Intval of int | Floatval of float
| Stringval of string | Pairval of value * value
| Listval of value list | Closure of string * exp * memory
| Recvar of string * exp * memory | Exn of int

The type value is output from your evaluator when evaluating expressions. The type memory serves as both
input to evaluator in general, and output from your evaluator when evaluating declarations. For example, one evaluates
a declaration starting from some initial memory, and a binding and a final memory are returned.

One interacts with memories, as we did with environments in MP5, using the following functions, pre-defined in
Mp9common:

(* create a new memory with the given identifier and value *)
val make_mem : string -> value -> memory = <fun>
(* look up an identifier in the given memory *)
val lookup_mem : memory -> string -> value = <fun>
(* insert a new binding to the given memory *)
val ins_mem : memory -> string -> value -> memory = <fun>

4 Compiling, etc...
For this MP, you will only have to modify mp9-skeleton.ml (first convert it to mp9.ml), adding the functions re-
quested. To test your code, type make and the three needed executables will be built: picomlint, picomlintSol
and grader. The first two are explained below. grader checks your implementation against the solution for a fixed
set of test cases as given in the tests file.

2

4.1 Given Files
mp9-skeleton.ml: This file contains the evaluator code. This is the ONLY file that you will have to modify. Change

the name of the file to mp9.ml and work on it.

picomlint.ml: This file contains the main body of the picomlint and picomlintSol executable. It handles
lexing, parsing, and type inferences, and calls your evaluation functions, while providing a friendly prompt to
enter PicoML concrete syntax.

picomllex.cmo, .cmi: These files contain the compiled lexing code.

picomlyacc.cmo: This file contains the compiled parsing code.

4.2 Running PicoML
The given Makefile builds executables called picomlint and picomlintSol. The first is an executable for an
interactive loop for the evaluator built from your solution to the assignment and the second is built from the standard
solution. If you run ./picomlint or ./picomlintSol, you will get an interactive screen, much like the OCaml
interactive screen. You can type in PicoML declarations (followed by double semicolons), and they will be evaluated,
and the resulting binding will be displayed.

At the command prompt, the programs will be evaluated (or fail evaluation) starting from the initial memory, which
is empty. Each time, if evaluation is successful, the resulting memory will be displayed. Note that a program can fail
at any of several stages: lexing, parsing, type inferencing, or evaluation itself. Evaluation itself will tend to fail until
you have solved at least some of the problems to come.

Part 1
Problems in Part 1 of this MP are mandatory for all students. Part 2 is mandatory for only grad students. Undergrads
may submit a solution for Part 2 for extra credit. Part 1 does not contain any exception handling. Part 2 will cover
exceptions.

5 Problems
These problems ask you to create an evaluator for PicoML by writing the functions eval dec, and eval exp as
specified. In addition, you will be asked to implement the functions const to val, monApply and binApply.

Modify only these functions. Do not modify any other code in mp9.ml or any other file. You may, however,
add your own helper functions to mp9.ml.

For each problem, you should refer to the list of rules given as part of the problem. The rules specify how evaluation
should be carried out, using natural semantics. Natural semantics were covered in the class; see the lecture notes for
details.

Here are some guidelines:

• eval dec takes a top-level declaration and a memory, and returns a triple of a string option, value, and memory.
Its type is toplvl * memory -> (string option * value) * memory.

• eval exp takes an expression and a memory, and returns a value. Its type is exp * memory -> value.

The problems are ordered such that simpler and more fundamental concepts come first. For this reason, it is
recommended that you solve the problems in the order given. Doing so may make it easier for you to test your
solution before it is completed.

Here is a key to interpreting the rules:

d = top-level declaration

3

m = memory (environment)

e = expression

v = value

– n, i, j = integer

– b = bool

– r = float

– s = string

– c = monadic (unary) operator

x = identifier/variable

t = constant

As mentioned, you should test your code in the executable PicoML environment. The problem statements that
follow include some examples. However, the problem statements also contain test cases that can be used to test your
implementation in the OCaml environment.

1. Expression as a Declaration (5 pts)

Extend eval dec (dec, m) to handle expressions that come as top-level declarations. eval dec takes a
declaration and a memory, and returns the memory updated with the bindings introduced by the declaration.

When evaluating an expression as a declaration, since there is no concrete identifier that can be bound, we bind the
wildcard underscore (), represented by None.

(e,m) ⇓ v

(e;; , m) ⇓ ((, v),m)

You need to implement this rule first to be able to test other cases in the interactive top level of PicoML. We can’t
actually test this rule without the benefits of at least one rule for evaluating an expression.

2. Constants (5 pts)

Extend eval exp (exp, m) to handle non-functional constants (i.e. integers, bools, real numbers, strings, nil,
unit). For this question you will need to implement const to val: const -> value. This function takes
a constant and returns the corresponding value.

(t,m) ⇓ const to val(t)

In the PicoML environment,

> 2;;

result:
_ = 2

A sample test case for the OCaml environment:

eval_exp(ConExp(Int 2), []);;
- : Mp9common.value = Intval 2

The code that corresponds to what happens at the top level in picomlint is the following:

4

eval_dec (Anon(ConExp(Int 2)), []);;
- : (string option * Mp9common.value) * Mp9common.memory =
((None, Intval 2), [])

3. Let Declarations (3 pts)

Extend eval dec (dec, m) to handle let-declarations. eval dec takes a top-level declaration and a memory,
and returns the binding introduced by the declaration together with the memory updated with that binding.

(e,m) ⇓ v

(let x = e;; , m) ⇓ ((x, v),m+ {x→ v})

In the PicoML environment,

> let x = 2;;

result:
x = 2

A sample test case for the OCaml environment:

eval_dec (TopLet("x", ConExp(Int 2)), []);;
- : (string option * Mp9common.value) * Mp9common.memory =
((Some "x", Intval 2), [("x", Intval 2)])

4. Identifiers (no recursion) (5 pts)

Extend eval exp (exp, m) to handle identifiers (i.e. variables) that are not recursive. These are identifiers in
m that do not have a value of the form Recvar〈...〉 (recursive identifiers are handled later).

m(x) = v v 6= Recvar〈y, e,m′〉

(x,m) ⇓ v

Here is a sample test case.

eval_exp ((VarExp "x"), [("x", Intval 2)]);;
- : Mp9common.value = Intval 2

In the PicoML environment, if you have previously successfully done Problem 3, you can test this problem with:

> x;;

result:
_ = 2

5. Monadic operator application (8 pts)

Extend eval exp (exp, m) to handle application of monadic operators (monop hd, tl, fst, snd, ˜ and
print int. For this question, you need to implement the monApply: monop -> value -> value
function following the table below. (Hint: Check how we represent lists and pairs with the value type)

5

operator argument operation
hd a list return the head of the list
tl a list return the tail of the list
fst a pair return the first element of the pair
snd a pair return the second element of the pair
˜ an integer return the result of multiply the integer by −1
print int an integer print the integer, then return unit, ()

If ‡ stands for any monaidic operator, the rule for appliaction of monadic operators is as follows:

(e,m) ⇓ v1 monApply(‡, v1) ⇓ v2

(‡ e,m) ⇓ v2

Note: Unless you are going to do Part 2, you should raise an OCaml exception if hd or tl is applied to an empty
list. In Part 2, this is handled in a different way. Please see Problem 16 for the other possiblity for how to handle
this.

A sample test case in the PicoML interpreter:

> ˜15;;

result:
_ = -15

6. Binary Operators (8 pts)

Extend eval exp (exp, m) to handle the application of binary operators. We will denote the binary operator
by ⊕. For this question, you need to implement the function binApply : binop -> value * value
-> value . Division by 0 should raise an OCaml exception, unless you are doing Part 2.

operator arguments operation
+ Two integers Addition
- Two integers Subtraction
* Two integers Multiplication
/ Two integers Division
+. Two floating numbers Addition
-. Two floating numbers Subtraction
*. Two floating numbers Multiplication
/. Two floating numbers Division
** Two floating numbers Power
ˆ Two strings Concatenation
:: A value and a list Cons
, Two values Pairing
= Two values Equality comparison
< Two values Less than
> Two values Greater than
≤ Two values Less than or equal
≥ Two values Greater than or equal

(e1,m) ⇓ v1 (e2,m) ⇓ v2 binApply(⊕, v1, v2) = v

((e1 ⊕ e2),m) ⇓ v

Note: For equality and other comparison operators, use the overloaded equality and comparison operators of
OCaml directly on the objects of type value.

A sample test case.

6

eval_exp (BinExp (Add, ConExp(Int 3), ConExp(Int 4)), []);;
- : Mp9common.value = Intval 7

In the PicoML environment, you can test this problem with:

> 3 + 4;;

result:
_ = 7

7. Let-in constructs (5 pts)

Extend eval exp (exp, m) to handle let-in constructs.

(e1,m) ⇓ v1 (e2,m+ {x→ v1}) ⇓ v2

(let x = e1 in e2,m) ⇓ v2

eval_exp ((LetExp("y", ConExp(Int 5), VarExp "y")), []);;
- : Mp9common.value = Intval 5

In the PicoML environment,

> let y = 5 in y;;

result:
_ = 5

8. Functions (5 pts)

Extend eval exp (exp, m) to handle functions. You will need to return a Closure.

(fun x -> e,m) ⇓ 〈x→ e,m〉

A sample test case.

eval_exp (FunExp("x", (BinExp (Add, VarExp "x", VarExp "x"))), []);;
- : Mp9common.value = Closure ("x", BinExp (Add, VarExp "x", VarExp "x"), [])

In the PicoML environment,

> fun x -> x + x;;

result:
_ = <some closure>

9. Function application (5 pts)

Extend eval exp (exp, m) to handle function application.

(e1,m) ⇓ 〈x→ e′,m′〉 (e2,m) ⇓ v′ (e′,m′ + {x→ v′}) ⇓ v

(e1e2,m) ⇓ v

A sample test case.

7

eval_exp ((AppExp(FunExp("x", VarExp "x"), ConExp(Int 5))), []);;
- : Mp9common.value = Intval 5

In the PicoML environment:

> (fun x -> x) 5 ;;

result:
_ = 5

10. If constructs (5 pts)

Extend eval exp (exp, m) to handle if constructs.

(e1,m) ⇓ true (e2,m) ⇓ v

(if e1 then e2 else e3,m) ⇓ v

(e1,m) ⇓ false (e3,m) ⇓ v

(if e1 then e2 else e3 ⇓ v,m)

eval_exp (IfExp(ConExp(Bool true), ConExp(Int 1), ConExp(Int 0)), []);;
- : Mp9common.value = Intval 1

In the PicoML environment,

> if true then false else true;;

result:
_ = false

11. Recursive Declarations (5 pts)

Extend eval dec (dec, m) to handle recursive declarations. Recursive declarations are handled in much the
same way as functions using Recvar:

(let rec f x = e;; , m) ⇓ ((f,Recvar〈x, e,m〉),m+ {f → Recvar〈x, e,m〉)})

eval_dec ((TopRec("f", "x", ConExp(Int 1))), []);;
- : (string option * Mp9common.value) * Mp9common.memory =
((Some "f", Recvar ("x", ConExp (Int 1), [])),
[("f", Recvar ("x", ConExp (Int 1), []))])

In the PicoML environment, once you have done Problem 13, you can try:

> let rec f x = if x = 0 then 1 else x * f (x - 1);;

result:
f = <some recvar>
> f 5;;

result:
_ = 120

8

12. Letrec-in constructs (3 pts)

Extend eval exp (exp, m) to handle letrec bindings.

(e2,m+ {f → Recvar〈x, e1,m〉}) ⇓ v

(let rec f x = e1 in e2,m) ⇓ v

In the PicoML environment,

> let rec f x = x + 1 in f 3;;

result:
_ = 4

13. Recursive identifiers (8 pts)

Extend eval exp (ex, m) to handle recursive identifiers. These are identifiers that go to Recvar〈x, e,m′〉
for some expression e, memory m′. (You have already implemented non-recursive identifiers in Problem 4.)

m(x) = Recvar〈y, e,m′〉

(x,m) ⇓ 〈y → e,m′ + {x→ Recvar〈y, e,m′〉}〉

In the PicoML environment,

> let rec f x = if x = 0 then 1 else x * f (x - 1) in f 3 ;;

result:
_ = 6

9

Part 2
This part is mandatory for grad students. It is extra credit for undergrads.

Part 1 simply ignored exceptions. In this section we include them in our language. First of all, we use the value
constructor Exn of int in our value type to represent the raising of an exception.

An exception propagates through the evaluates. That is, if a subexpression of an expression evaluates to an excep-
tion, then the main expression also evaluates to the exception without evaluating the remaining subexpressions. We
need to update our evaluation rules to handle this situation. The rules from Part 1 are updated as follows (unlisted rules
stay the same):

(e,m) ⇓ v v 6= Exn(i)

(let x = e;; , m) ⇓ ((x, v),m+ {x→ v})

(e,m) ⇓ v1 v1 6= Exn(i) monApply(‡, v1) ⇓ v2

(‡ e,m) ⇓ v

(e1,m) ⇓ v1 (e2,m) ⇓ v2 v1, v2 6= Exn(i) binApply(⊕, v1, v2) = v

((e1 ⊕ e2),m) ⇓ (v)

(e1,m) ⇓ v1 v1 6= Exn(i) (e2,m+ {x→ v1}) ⇓ v2

(let x = e1 in e2,m) ⇓ v2

(e1,m) ⇓ 〈x→ e′,m′〉 (e2,m) ⇓ v′ v′ 6= Exn(i) (e′,m′ + {x→ v′}) ⇓ v

(e1e2,m) ⇓ v

Note that in the rules above we require some values to be non-exceptions. In Part 1, since we were not considering
the possibility of exceptions, these premises were treated as trivially true and they were omitted.

Below are the rules that handle the cases when an exception may occur.

(e,m) ⇓ Exn(i)

(let x = e;; , m) ⇓ ((, Exn(i)),m)

(e,m) ⇓ Exn(i)

(‡e,m) ⇓ Exn(i)

(e1,m) ⇓ Exn(i)

((e1 ⊕ e2),m) ⇓ Exn(i)

(e1,m) ⇓ v1 v1 6= Exn(j) (e2,m) ⇓ Exn(i)

((e1 ⊕ e2),m) ⇓ Exn(i)

(e1,m) ⇓ Exn(i)

(let x = e1 in e2,m) ⇓ Exn(i)

(e1,m) ⇓ Exn(i)

(e1e2,m) ⇓ Exn(i)

(e1,m) ⇓ 〈x→ e′,m′〉 (e2,m) ⇓ Exn(i)

(e1e2,m) ⇓ Exn(i)

(e1,m) ⇓ Exn(i)

if e1 then e2 else e3 ⇓ Exn(i)

10

6 Problems
14. (10 pts)

Update your implementation to incorporate exceptions in the evaluator. Follow the rules given above.

15. Explicit exceptions (5 pts)

Extend eval exp (exp, m) to handle explicit exception raising.

(e,m) ⇓ n

(raise e,m) ⇓ Exn(n)

(e,m) ⇓ Exn(i)

(raise e,m) ⇓ Exn(i)

eval_exp ((RaiseExp(ConExp(Int 1))), []);;
- : Mp9common.value = Exn 1

16. Implicit exceptions (4 pts)

Modify binApply and monApply to return an exception if an unexpected error occurs. In such case, Exn(0)
should be returned. Below are the cases you need to cover:

– An attempt to divide by zero (Both integer and real division).
– An attempt to get the head of an empty list.
– An attempt to get the tail of an empty list.

eval_exp (MonExp(Head, ConExp Nil), []);;
- : Mp9common.value = Exn 0

In the PicoML interpreter:

> 4/0;;

result:
_ = (Exn 0)

17. Try-with construct (10 pts)

Extend eval exp (exp, m) to handle try-with expressions.

(e,m) ⇓ v v 6= Exn(j)

((try e with n1 -> e1 | . . . | np -> ep),m) ⇓ v

(e,m) ⇓ Exn(j) ∀k ≤ p.(nk 6= j and nk 6=)

((try e with n1 -> e1 | . . . | np -> ep),m) ⇓ Exn(j)

(e,m) ⇓ Exn(j) (ei,m) ⇓ v (ni = j or ni =) ∀k < i.(nk 6= j and nk 6=)

((try e with n1 -> e1 | . . . | np -> ep),m) ⇓ v

In PicoML environment,

> try 4 / 0 with 0 -> 9999;;

result:
_ = 9999

Final Remark: Please add numerous test cases to the test suite. Try to cover obscure cases.

11

	Change Log
	Overview
	Types
	Compiling, etc...
	Given Files
	Running PicoML

	Problems
	Problems

