
MP 4 – Working with ADTs
CS 421 – Fall 2011

Revision 1.0

Assigned September 13, 2011
Due September 20, 2011 23:59
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this MP is to help the student master:

1. constructing algebraic data types

2. deconstructing algebraic data types

3. continuation passing style transformations

Throughout this MP we will be working with a (very) simple functional language. It is the seed of the language
with which we will be working on MPs throughout the rest of this semester. In this MP, instead of writing our
programs in text files and parsing them, we will represent the structure of our programs via terms made from a set of
four algebraic data types.

In this MP, you will primarily be working the data type exp, which we will describe here. It is the main type
representing expressions in our simple programming language. The type exp makes use of three other data types.
The type const describes the type of values in our language. We allow for integers, booleans, and the empty list.
This set will be expanded in later assignments.

type const = Int of int | Bool of bool | Nil

The types monop and binop represent the names of built-in operations of one or two arguments. The binary opera-
tions supported here are addition, subtraction and multiplication on the integers, generic equality and ordering testing,
and consing of elements onto a list. Again, these types will grow in later assignments. The operators of one argument
are for taking the head and the tail of a list and printing integer values. The operators for taking the head and tail of a
list must be included among the primitive operations because we have no pattern-matching in this simple language.

type binop = Add | Sub | Mul | Eq | Less | Cons

type monop = Head | Tail | Print

The next data type exp gives all the main ways we have of making expressions in our language: variable and constants,
if-then-else expressions, application of one expression to another, expression using built in operations of one or two
arguments, functions expressions, local let-bindings, and recursive local let rec-bindings.

type exp =
| VarExp of string (* variables *)
| ConExp of const (* constants *)
| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)
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| AppExp of exp * exp (* exp1 exp2 *)
| BinExp of binop * exp * exp (* exp1 % exp2

where % is a builtin binary operator *)
| MonExp of monop * exp (* % exp1

where % is a builtin monadic operator *)
| FunExp of string * exp (* fun x -> exp *)
| LetExp of string * exp * exp (* let x = exp1 in exp2 *)
| RecExp of string * string * exp * exp (* let rec x = exp1 in exp2 *)
| OAppExp of exp * exp (* Extra credit *)

An example of the use of this data type would be to represent the function calculating the length of a list:

let rec length l = if l = [] then 0 else 1 + (length (tl l)) in length

becomes

RecExp("length", "l",
IfExp(BinExp(Eq,VarExp "l", ConExp Nil),

ConExp(Int 0),
BinExp(Add, ConExp(Int 1),

AppExp(VarExp "length", MonExp(Tail, VarExp "l")))),
VarExp "length")

To facilitate in debugging your code, in the module Mp4common we have supplied you with a function
string of exp : Mp4common.exp -> string that will generate the concrete syntax that corresponds to
a given exp term. For example, if you apply string of exp to the exp term immediately above, you get a string
containing the code displayed immediately before that.

A function eval : exp -> string that will “execute” your code, generating a string that is what the top-
level loop would print as a value if you were to execute the corresponding code in OCaml. For example, calling the
exp versio of length:

# eval (RecExp("length","l",...,AppExp(VarExp "length",ConExp(Nil))));;
- : string = "0"

To use eval, build it and then import the needed modules:

% make top
% ./mp4-top
open Mp4common;;
open Student;;
open Mp4eval;;
open Rubric;;
# eval (RecExp("length","l",...,AppExp(VarExp "length",ConExp(Nil))));;
- : string = "0"

3 Problems
The problems below have sample executions that suggest how to write answers. Students have to use the same function
name, but the name of the parameters that follow the function name need not be duplicated. That is, the students are
free to choose different names for the arguments to the functions from the ones given in the example execution. You
are not required to start your code with let rec. You may use any library functions you wish.

1. (4 pts) Write a function import list: int list -> exp, that takes an integer list and converts it into
an expression in our language that is equivalent.
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# let rec import_list lst = ... ;;
val import_list : int list -> Mp4common.exp = <fun>
# import_list [1;2];;
- : exp = BinExp(Cons,ConExp (Int 1),BinExp(Cons,ConExp (Int 2),ConExp Nil))

2. (4 pts) Write a term in our language that implements the elem from MP2 using the following OCaml code:

let rec elem e = fun xs -> if xs = [] then false
else if hd xs = e then true
else elem e (tl xs)

in elem

For this code to actually compile in OCaml, open List;; would first have to be executed.

# let elem = ... ;;
val elem : exp = ...
# string_of_exp elem;;
- : string =
"let rec elem e = fun xs -> if xs = [] then false else if hd xs = e
then true else elem e (tl xs) in elem"

You can test out your implementation by evaluating it on various input as follows:

# #load "mp4eval.cmo";;
# open Mp4eval;;
# eval (AppExp(AppExp(elem,ConExp (Int 1)),import_list [1;2;3]));;
- : string = "true"
# eval (AppExp(AppExp(elem,ConExp (Int 4)),import_list [1;2;3]));;
- : string = "false"

3. (12 pts) Write a function num of consts : exp -> int that counts the number of occurrences of the
constructor ConExp in an exp.

# let rec num_of_consts exp = ...
val num_of_consts : exp -> int = <fun>
# num_of_consts (IfExp(BinExp(Eq,VarExp "l", ConExp Nil), ConExp(Int 0), VarExp "x"));;
- : int = 2

4. (20 pts) A free variable in an expression is a variable that isn’t bound in that expression. Free variables are the
variables that had to be given a value previously for the expression to be able to be evaluated. As an example, in
(let x = y in fun s -> a x s) the variables a and y are free but x and s are not.

Write a function freeVars : exp -> string list that calculates the names of the free variables of an
expression. As in MP2, represent sets via lists. The grader will cope with answers that have duplicate entries or
the result list in a different order than our reference solution. You may notice that the case for OAppExp (which
we will write infixed as (e1$e2)) is missing; that will be covered in the extra credit.

To assist you in writing this function, we have broken the problem down into groups of similar cases. We also give
the precise mathematical definition (in cases) for a function ϕ calculating the free variables of an expression e.
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a. (2 pts.) We can define a function ϕ(e) that calculates the free variables of an expression, where the expression
is a variable v, or a constant c by

ϕ(v) = v

ϕ(c) = ∅

The function freeVars should behave in a similar manner, returning no names for a constant, and the
singleton name of a variable. Write the appropriate clause for freeVars to return the free variables of
expressions that are constants or variables.

# let rec freeVars = ... ;;
val freeVars : exp -> string list = <fun>
# freeVars (VarExp "x");;
- : string list = ["x"]

b. (8 pts.) The set of free variables of an expression that is top-most an if-then-else, the use of a unary or
binary operator, or the application of one expression to another is just the union of the free variables of all
the immediate subexpressions.

ϕ(if e1 then e2 else e3) = ϕ(e1) ∪ ϕ(e2) ∪ ϕ(e3)
ϕ(⊕e) = ϕ(e) For unary operator ⊕

ϕ(e1 ⊕ e2) = ϕ(e1) ∪ ϕ(e2) For binary operator ⊕
ϕ(e1 e2) = ϕ(e1) ∪ ϕ(e2)

Write the clauses for freeVars for expressions that are top-most an if-then-else, the use of a unary or
binary operator, or the application of one expression to another.

# freeVars (IfExp(ConExp(Bool true), VarExp "x", VarExp "y"));;
- : string list = ["x"; "y"]

c. (3 pts.) The free variables of a function expression are all the free variables in the body of the expression
except the variable that is the formal parameter. Any occurrence of that variable in the body of the function
is bound by the formal parameter, and not free.

ϕ(fun x -> e) = ϕ(e)− {x}

Add clauses to freeVars to compute the free variables of a function expression.

# freeVars (FunExp("x", VarExp "x"));;
- : string list = []

d. (3 pts.) The free variables of a let-expression are also restricted by the binding the let introduces. In let
x = e1 in e2 the x bind any occurrence of x in e2, as in the body of a function, but does not change which
variables free in e1 are free in the whole expression.

ϕ(let x = e1 in e2) = ϕ(e1) ∪ (ϕ(e2)− {x})

Add the clause to freeVars to compute the free variables of let-expressions.

# freeVars (LetExp("x", VarExp "y", VarExp "x"));;
- : string list = ["y"]
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e. (4 pts) The most complicated case for computing the free variables of an expression is that of a let rec-
expression. In let rec-expressions, there are two bindings taking place, and they have two different
scopes. In let rec f x = e1 in e2), the f binds all the occurrences of f in both e1 and e2, but the x
only binds occurrences of x in e1; if x is a free variable of e2 it will be a free variable of let rec f x =
e1 in e2).

ϕ(let rec f x = e1 in e2) = (ϕ(e1)− {f, x}) ∪ (ϕ(e2)− {f})

Write the clause for freeVars for let rec-expressions.

# freeVars (RecExp("f","x",AppExp(VarExp "f",VarExp "x"),
(AppExp(VarExp "f",VarExp "y"))));;

- : string list = ["y"]

5. In MP3 you converted some expressions to use Continuation-Passing Style (CPS). In this section you will build a
function cps : exp -> exp -> exp to automatically transform expressions in our language into CPS.

Mathematically we represent this transformation by the function [[e]]κ, which calculates the CPS form of an
expression e when passed the continuation κ. κ does not represent a programming language variable, but rather a
complex expression describing the current continuation for e.

The defining equations of this function are given below. In these rules f , k, x, v and vi represent variables in
our programming language, c is a constant, e or ei are expression. The variables f and x will represent variables
that were already present in the expression to be transformed. The variables v and vi are used to represent newly
introduced variables used to pass a value from the previous computation forward into the current continuation. The
variable k is used to represent a variable (such as a formal parameter to a function) to be instantiated by an as yet
unknown continuation.

By v being fresh for an expression e, we mean that v needs to be some variable that is NOT free in e. In
Mp4common, we have supplied a function freshFor : string list -> string that, when given a
list of names, will generate a name that is not in the list. When implementing cps, the names you use for these
“fresh” variables do not have be the same as the ones we use, but they do have to satisfy the required freshness
constraint.

a. (4 pts) The CPS transformation of a variable or constant expression just applies to the continuation to the
variable or constant, since during execution, when this point in the code is reached, both variables and
constants are already fully evaluated (except for being looked up).

[[v]]κ = κ v

[[c]]κ = κ c

The code for the function cps should behave is a similar manner, creating the application of the continuation
to the variable or constant. Add code to cps to implement the CPS-transformation of an expression that is a
const

# string_of_exp (cps (VarExp "x") (VarExp "k"));;
- : string = "k x"

b. (3 pts) Each CPS transformation should make explicit the order of evaluation of each subexpression. For
if-then-else expressions, the first thing to be done is to evaluate the boolean guard. The resulting boolean
value needs to be passed to an if-then-else that will choose a branch. When the boolean value is true, we need
to evaluate the transformed then-branch, which will pass its value to the final continuation from the if-then-
else expression. Similarly, when the boolean value is false we need to evaluate the transformed else-branch,
which will pass its value to the final continuation from the if-then-else expression. To accomplish this, we
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recursively CPS-transform e1 with the continuation with a formal parameter v, that is fresh for e2, e3 and
κ, where, based on the value of v, the continuation chooses either the CPS-transform of e2 with the original
continuation κ, or the CPS-transform of e3, again with the original continuation κ.

[[if e1 then e2 else e3]]κ = [[e1]]fun v -> if v then [[e2]]κ else [[e3]]κ

Where v is fresh for e2, e3, and κ

Add a clause to cps for the case for if-then-else operators.

# string_of_exp (cps (IfExp (VarExp "b", ConExp (Int 2), ConExp (Int 5)))
(VarExp "k"));;

- : string = "(fun a -> if a then k 2 else k 5) b"

c. (3 pts) The CPS transformation for application mirrors its evaluation order. It first evaluates the function, e1,
to a closure then evaluates e2 to a value which that closure is applied to. We create a new continuation that
takes the result of e1 binds it to v1 then evaluates e2 and binds it to v2. Finally, v1 is applied to v2 and, since
the CPS transformation makes all functions take a continuation, to the current continuation κ. Implement
this rule.

[[e1 e2]]κ = [[e1]]fun v1 -> [[e2]]fun v2 -> v1 v2 κ
Where

v1 is fresh for e2 and κ
v2 is fresh for v1 and κ

# string_of_exp (cps (AppExp (VarExp "f", VarExp "x")) (VarExp "k"));;
- : string = "(fun a -> (fun b -> a b k) x) f"

d. (3 pts) The CPS transformation for a binary operator mirrors its evaluation order. It first evaluates its first
argument then its second before evaluating the binary operator applied to those two values. We create a new
continuation that takes the result of the first argument, e1, binds it to v1 then evaluates the second argument,
e2, and binds that result to v2. As a last step it applies the current continuation to the result of v1 ⊕ v2.
Implement the following rule.

[[e1 ⊕ e2]]κ = [[e1]]fun v1 -> [[e2]]fun v2 -> κ (v1 ⊕ v2)
Where

v1 is fresh for e1, e2, and κ
v2 is fresh for e1, e2, κ, and v1

# string_of_exp (cps (BinExp (Add, ConExp(Int 5), ConExp(Int 1)))
(VarExp "k"));;

- : string = "(fun a -> (fun b -> k (a + b)) 1) 5"

e. (3 pts) The CPS transformation for a unary operator mirrors its evaluation order. It first evaluates the argument
of the operator and then applies the continuation to the result of applying that operator to the value. Thus
we create a continuation that takes the result of evaluating the argument, e, and binds it to v then applies the
continuation to the result of ⊕v. Implement the following rule.

[[⊕e]]κ = [[e]]fun v -> κ (⊕v) Where v is fresh for κ

# string_of_exp (cps (MonExp (Head, ConExp Nil)) (VarExp "k"));;
- : string = "(fun a -> k (hd a)) []"

f. (3 pts) A function expression by itself does not get evaluated (well, it gets turned into a closure), so it needs
to handed to the continuation directly, except that when it eventually gets applied, it will need to additionally
take a continuation as another argument, and its body will need to have been transformed. Therefore, we
need to choose a variable k that is fresh for the body of the function, e, to be the formal parameter for passing
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a continuation into the function. Then, we need to transform the body with k as its continuation, and put
it inside a function with the same original formal parameter together with k. The original continuation κ is
then applied to the result.

[[fun x -> e]]κ = κ (fun x -> fun k -> [[e]]k) Where k is fresh for e

Write the clause for the case for functions.

# string_of_exp (cps (FunExp ("x", VarExp "x")) (VarExp "k"));;
- : string = "k (fun x -> fun a -> a x)"

g. (3 pts) A let expression first evaluates the expression being bound, e1, binds it to the name x and then
evaluates e2 in the context of that new binding. You may notice that this is roughly what a function does
during evaluation. For example, let x = e1 in e2 could have been written as (fun x -> e2)e1. To
transform a let expression to CPS we construct a continuation that takes the result of evaluating e1 binds it
to x then evaluates e2 with this new binding, passing along the current continuation. Implement the following
rule.

[[let x = e1 in e2]]κ = [[e1]]fun x -> [[e2]]κ

# string_of_exp (cps (LetExp ("x", ConExp(Int 2), VarExp "x")) (VarExp "k"));;
- : string = "(fun x -> k x) 2"

h. (3 pts) A let rec expression creates recursive definition for f and then evaluates the body, e2, with this
definition in scope. Since we require let rec expressions to be functions we do the CPS transform for the
function binding as well as passing the current continuation to the body. Implement the following rule.

[[let rec f x = e1 in e2]]κ = let rec f x = fun v -> [[e1]]v in [[e2]]κ

Where v is fresh for f , x, and e1

# string_of_exp (cps (RecExp ("f","x",VarExp "x",ConExp (Int 4))) (VarExp "k"));;
- : string = "let rec f x = fun a -> a x in k 4"

3.1 Extra Credit
6. (5 pts) The OAppExp constructor for our language is application that evaluates its second argument first and then

its first before applying the first to the second. It introduces no new bindings. Add the (e1$e2) case for both
freeVars and cps.

# string_of_exp (cps (OAppExp (FunExp ("x", VarExp "x"), ConExp (Int 2)))
(VarExp "k"));;

- : string = "(fun a -> (fun b -> b a k) (fun x -> fun a -> a x)) 2"
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