
HW 2 – Unification, Regular Expressions,
Parse Trees, Ambiguous Grammars,

LRParsing
CS 421 – Fall 2011

Revision 1.0

Assigned Tuesday, October 25, 2011
Due Tuesday, November 1, 2011, 2:00 PM - in class
Extension No extension, due to proximity to second midterm

1 Change Log
1.1 Corrected a typo in Problem 4: “go to state 5” should have been “go to state 1”. Added a clarification to Problem

2.b.

1.0 Initial Release.

2 Turn-In Procedure
Your answers to the following questions are to be hand-written, or printed, neatly on one or more sheets of paper, each
with your name in the upper right corner. The homework is to be turned in in class at the start of class. Alternately,
you may hand it to Prof. Elsa Gunter in person before the deadline.

3 Objectives and Background
The purpose of this HW is to test your understanding of

• How to unify a system of equations

• How to use regular expressions and regular grammars to formally express sets of strings (called languages)
given by an English language description

• How to create a parse tree for a given string with a given grammar

• How to disambiguate a grammar

• How to write a recursive descent parser for an LL(1) grammar

Another purpose of HW2 is to provide you with experience answering non-programming written questions of the
kind you may experience on the second midterm and final.
Caution: It is strongly advised that you know how to do these problems before the second midterm.

1

4 Problems
1. (16 points) Use the unification algorithm described in class and in MP6 to give a most general unifier, if one

exists, for the following set of equations (unification problem). Capital letters (A,B,C,D,E) denote variables
of unification. The lower-case letters (f, l, n, p) are constants or term constructors. (f and p have arity 2 - i.e.,
take 2 arguments, l has arity 1, and n has arity 0 - i.e. it is a constant.) Show all your work by listing the
operations performed in each step of the unification and the result of that step. Your final answer should be a single
simultaneous substitution, together with the result of applying the substitution to the given unification problem.

{(f(p(A, f(D,B)), n) , f(p(f(p(B,C), l(C)), A), C))}

2. (16 points) For each of the following languages (i.e., sets of strings), write a regular expression and a regular
grammar generating the set:

a. (6 points) The set of all strings of a’s, b’s, and c’s such that there exists exactly one c, before that c there is
at least one character, but after that c there can be any number of characters.

b. (8 points) The set of all strings representing lists of binary numbers, where the list separator is a semicolon
and the list delimiters are the open on closed square bracket. The semicolon may only occur between two
binary numbers occurring consecutively in the list. Each binary number may not have a leading 0 unless it is
just 0.

3. (23 points) Consider the following grammar over the terminal alphabet 0, 1, 2, +, −, =, (,), if, then, else,
with nonterminal and start symbol < num >:

< num > ::= 0 | 1 | 2 | < num > + < num > | < num > − < num > | (< num >) |
if < num >=< num > then < num > else < num >

a. (9 points)Show that the above grammar is ambigous by showing at least three distinct parse trees for the
string

if 1 = 0 then 2 else 1 + 0 + 2

b. (9 points) Disambiguate this grammar such that + and − have the same precidence and associate to the left,
and the scope of the if then else extends as far to the right as is syntactically possible.

c. (5 points) Give a parse for the string

if 1 = 0 then 2 else 1 + 0 + 2

in the grammar you gave in the previous part of this problem.

4. (17 points) Given the following grammar over nonterminal <m>, <e> and <t>, and terminals z, o, l, r, p and
eof, with start symbol <m>:

P0 : < m >::=< e > eof

P1 : < e >::=< t >
P2 : < e >::=< t > p < e >
P3 : < t >::= z

P4 : < t >::= o

P5 : < t >::= l < e > r

and Action and Goto tables generated by YACC for the above grammar:

2

Action Goto
State z o l r p [eof] <m> <e> <t>
st1 s3 s4 s5 err err err st2 st7
st2 err err err err err a
st3 r3 r3 r3 r3 r3 r3
st4 r4 r4 r4 r4 r4 r4
st5 s3 s4 s5 err err err st8 st7
st6 err err err err err a
st7 err err err r1 s9 r1
st8 err err err s10 err err
st9 s3 s4 s5 err err err st11 st7

st10 r5 r5 r5 r5 r5 r5
st11 r2 r2 r2 r2 r2 r2

where sti is state i, si abbreviates shift i, ri abbreviates reduce i, a abbreviates accept and [eof] means we have
reached the end of input, describe how the string lzpor[eof] would be parsed with an LR parser using these
productions and tables by filling in the table on the next page. I have given you the first 5 cells in the first two rows
to get you started. You will need to add more rows.

Stack Current String Action to be taken
Empty lzpor[eof] Initialize stack, go to state 1
st1 lzpor[eof]

5. (Extra Credit) (10 points total)

a. (4pts) Using the rule for polyomorphic typing given in class, give a type derivation for

{x : int } ` let id = fun x => x in id id x : int

Caution: no credit will be given for incorrect parsing!

b. (6pts) Using the rules for monomorphic typing, prove that there does not exist a type τ such that

{x : int } ` let id = fun x => x in id id x : τ

is valid. I expect a rigorous proof.

3

