Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://www.cs.illinois.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Whole family more of grammars and automata – covered in automata theory

Sample Grammar

Language: Parenthesized sums of 0's and 1's

- Sum> ::= 0
- Sum >::= 1
- Sum> ::= <Sum> + <Sum>
- Sum> ::= (<Sum>)

BNF Grammars

Start with a set of characters, a,b,c,...

We call these *terminals*

Add a set of different characters, X,Y,Z,

. . .

We call these *nonterminals*

One special nonterminal S called *start* symbol

BNF Grammars

BNF rules (aka *productions*) have form

X ::= *y*

where **X** is any nonterminal and *y* is a string of terminals and nonterminals

BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

Terminals: 0 1 + ()
Nonterminals: <Sum>
Start symbol = <Sum>

- Sum >::= 1
- Sum> ::= <Sum> + <Sum>

Given rules

X::= *y***Z***w* and **Z**::=*v*

we may replace **Z** by *v* to say

$$X => yZW => yvW$$

Sequence of such replacements called derivation

 Derivation called *right-most* if always replace the right-most non-terminal

Start with the start symbol:

<Sum> =>

Pick a non-terminal

Pick a rule and substitute:
 <Sum> ::= <Sum> + <Sum>
 <Sum> => <Sum> + <Sum>

Pick a non-terminal:

Pick a rule and substitute:

 <Sum> ::= (<Sum>)
 <Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

Pick a non-terminal:

<Sum> => <Sum> + <Sum > => (<Sum>) + <Sum>

Pick a rule and substitute:

Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

=> (<mark><Sum> + <Sum></mark>) + <Sum>

Pick a non-terminal:

<Sum> => <Sum> + <Sum > => (<Sum>) + <Sum> => (<Sum> + <Sum>) + <Sum>

Pick a rule and substitute:

 <Sum >::= 1
 <Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

Pick a non-terminal:

Pick a rule and substitute: Sum >::= 0 $\langle Sum \rangle = \langle Sum \rangle + \langle Sum \rangle$ => (<Sum>) + <Sum> => (<Sum> + <Sum>) + <Sum> => (<Sum> + 1) + <Sum> => (<Sum> + 1) + 0

Pick a non-terminal:

Pick a rule and substitute

<Sum> => <Sum> + <Sum >

(0+1)+0 is generated by grammar

<Sum> => <Sum> + <Sum > => (<Sum>) + <Sum> => (<Sum> + <Sum>) + <Sum> => (<Sum> + 1) + <Sum> => (<Sum> + 1) + 0 => (0 + 1) + 0

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

BNF Semantics

The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol

Extended BNF Grammars

- Alternatives: allow rules of from X::=y/z
 - Abbreviates X::= y, X::= z
- Options: X::=y[v]z
 - Abbreviates X::=yvz, X::=yz
- Repetition: X::=y{v}*z
 - Can be eliminated by adding new nonterminal V and rules X::=yz, X::=yVz, V::=v, V::=W

Regular Grammars

- Subclass of BNF
- Only rules of form
 <nonterminal>::=<terminal><nonterminal> or
 <nonterminal>::=<terminal> or
 <nonterminal>::= ε
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)

Example

- Regular grammar:
 - <Balanced $> ::= \epsilon$
 - <Balanced> ::= 0<OneAndMore>
 - <Balanced> ::= 1<ZeroAndMore>
 - <OneAndMore> ::= 1<Balanced>
 - <ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0's as 1's

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

Example

Consider grammar:

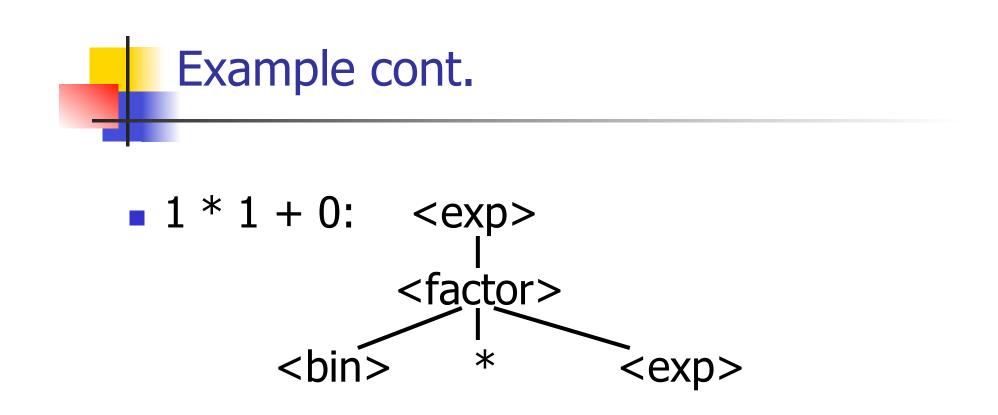
- Problem: Build parse tree for 1 * 1 + 0 as an <exp>

■ 1 * 1 + 0: <exp>

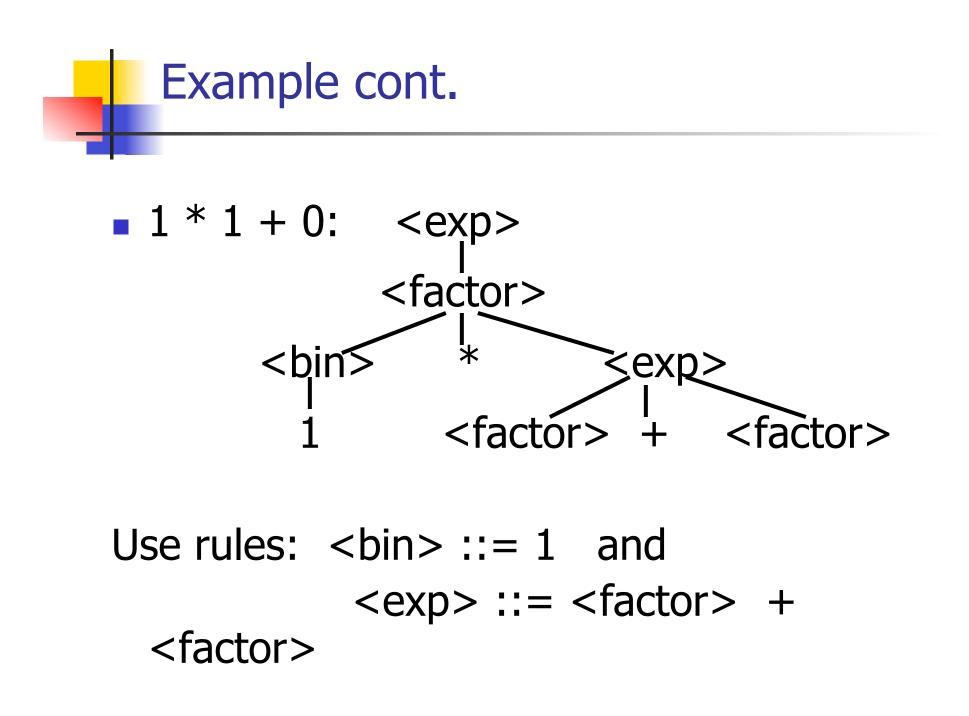
<exp> is the start symbol for this parse tree

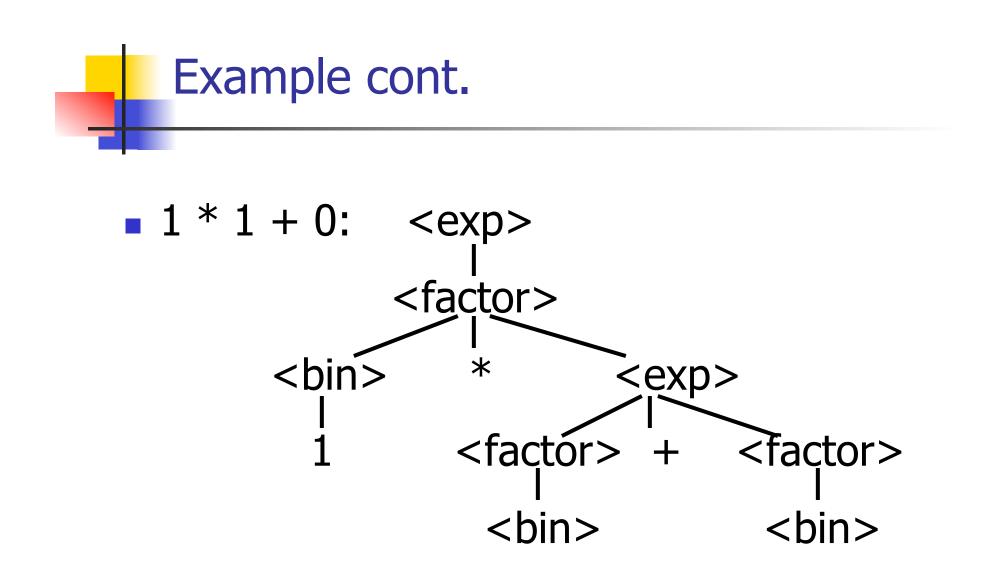
1 * 1 + 0: <exp> | <factor>

Use rule: <exp> ::= <factor>



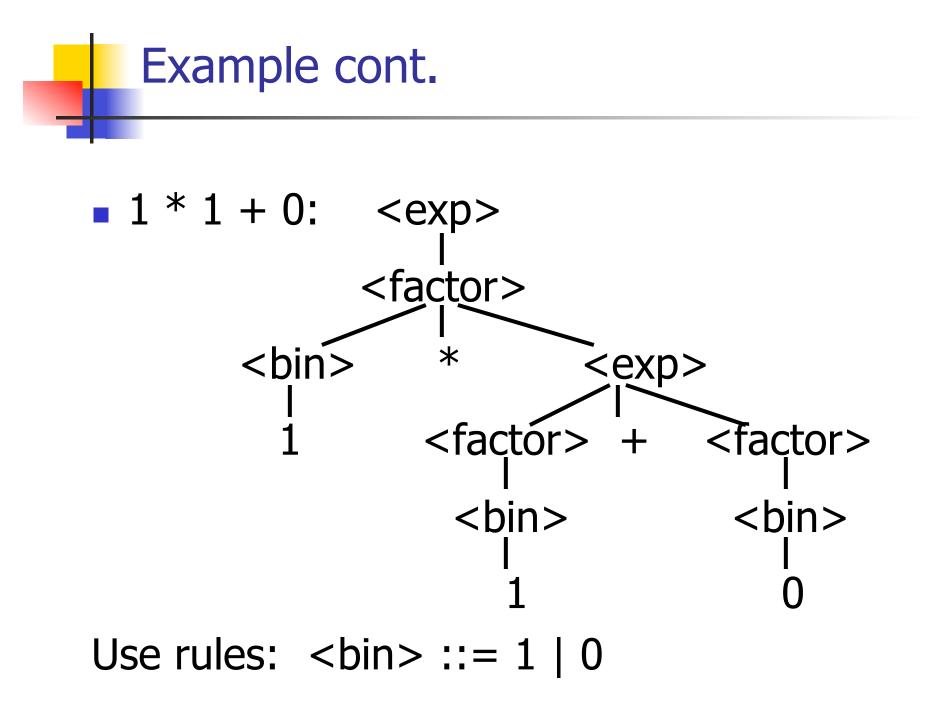
Use rule: <factor> ::= <bin> * <exp>

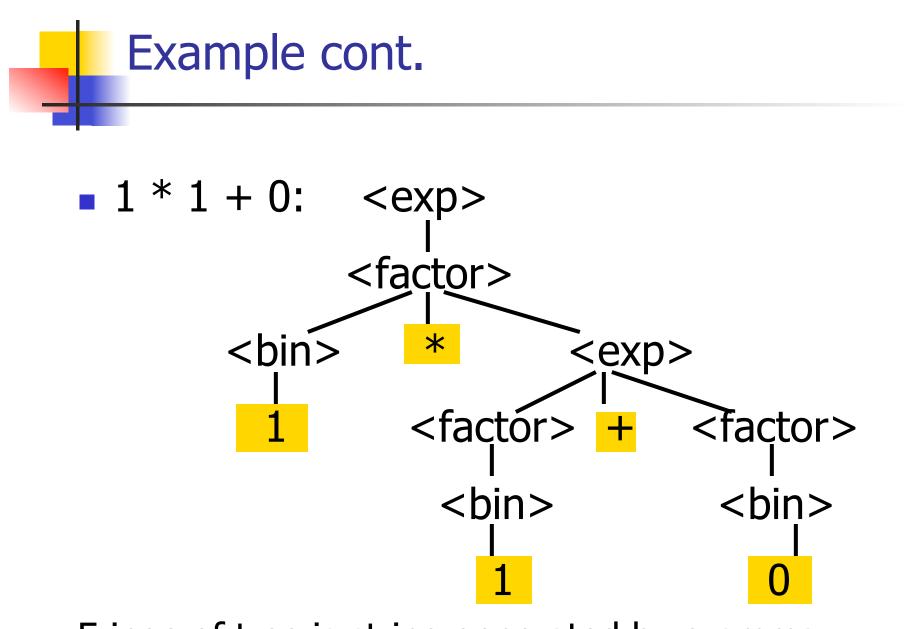




Use rule: <factor> ::= <bin>

10/20/11





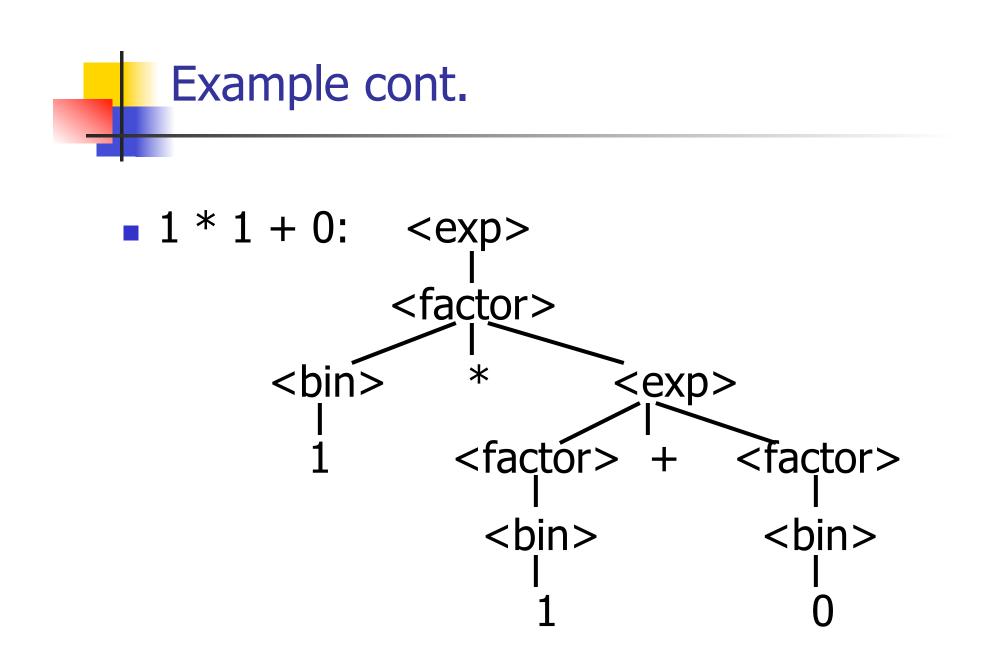
Fringe of tree is string generated by grammar

Your Turn: 1 * 0 + 0 * 1

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Recall grammar: <exp> ::= <factor> | <factor> + <factor> < factor > ::= < bin > | < bin > * < exp ><bin> ::= 0 | 1 type exp = Factor2Exp of factor | Plus of factor * factor and factor = Bin2Factor of bin | Mult of bin * exp and bin = Zero | One



Can be represented as

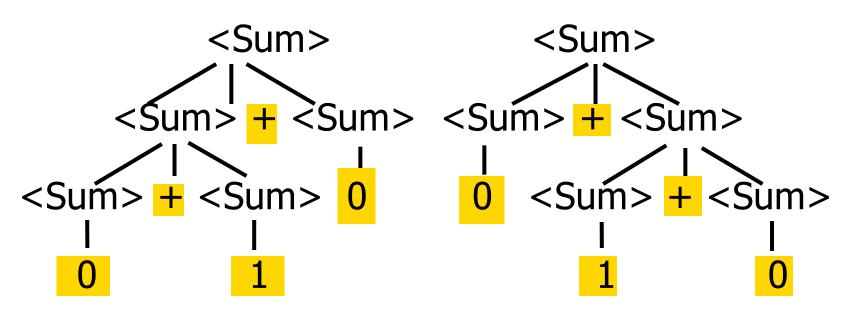
Factor2Exp (Mult(One, Plus(Bin2Factor One, Bin2Factor Zero)))

Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree
- If all BNF's for a language are ambiguous then the language is *inherently ambiguous*

Example: Ambiguous Grammar

0 + 1 + 0



What is the result for:

3 + 4 * 5 + 6

What is the result for:

Possible answers:

- $\bullet 41 = ((3 + 4) * 5) + 6$
- $\bullet \quad 47 = 3 + (4 * (5 + 6))$
- $\bullet 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)$
- -77 = (3 + 4) * (5 + 6)

■ What is the value of: 7 - 5 - 2

What is the value of:

- Possible answers:
 - In Pascal, C++, SML assoc. left

$$7-5-2 = (7-5)-2 = 0$$

In APL, associate to right

$$7-5-2=7-(5-2)=4$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity
- Not the only sources of ambiguity

How to Enforce Associativity

- Have at most one recursive call per production
- When two or more recursive calls would be natural leave right-most one for right assoicativity, left-most one for left assoiciativity

Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Becomes

- Sum> ::= <Num> | <Num> + <Sum>
- Num> ::= 0 | 1 | (<Sum>)

Operator Precedence

 Operators of highest precedence evaluated first (bind more tightly).

Precedence for infix binary operators given in following table

Needs to be reflected in grammar

Precedence Table - Sample

	Fortan	Pascal	C/C++	Ada	SML
highest	**	*, /, div, mod	++,	**	div, mod, / *
	*,/	+, -	*,/, %	*, /, mod	+, -, ^
	+, -		+, -	+, -	

First Example Again

- In any above language, 3 + 4 * 5 + 6 = 29
- In APL, all infix operators have same precedence
 - Thus we still don't know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
- <exp> ::= <id> | <exp> + <exp> | <exp> * <exp> |

Becomes