

Grammars

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Whole family more of grammars and automata - covered in automata theory

BNF Grammars

- Start with a set of characters, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$ - We call these terminals
- Add a set of different characters, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, ..
- We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

- BNF rules (aka productions) have form

$$
\mathbf{X}::=y
$$

where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals

- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: $01+$ ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::=0
- <Sum >::=1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
<Sum> ::=0|1

```
| <Sum> + <Sum> | (<Sum>)
```

10/20/11

BNF Derivations

- Start with the start symbol:
<Sum> =>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum $>=><$ Sum $>+<$ Sum $>$

BNF Deriviations

- Given rules

$$
\mathbf{X}::=y \mathbf{Z} w \text { and } \mathbf{Z}::=v
$$

we may replace \mathbf{Z} by v to say

$$
\mathbf{X}=>y \mathbf{Z} w=>y v w
$$

- Sequence of such replacements called derivation
- Derivation called right-most if always replace the right-most non-terminal

10/20/11

BNF Derivations

- Pick a non-terminal
<Sum> =>

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum >

$$
=>(\text { SSum }>)+\text { <Sum }>
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { SUum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { SSum }>)+\text { SUum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 1
<Sum> => <Sum> + <Sum >
$=>(<$ Sum $>)+$ <Sum $>$
$=>($ SSum $>+$ <Sum > $)+$ <Sum $>$ $=>(\langle$ Sum $>+1)+<$ Sum $>$

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =>\text { <Sum }>+ \text { <Sum }> \\
& =>(<\text { Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+ \text { <Sum })+\text { <Sum }> \\
& =>(\text { SSum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 0
<Sum> => <Sum> + <Sum >
$=>($ SUum $>)+$ <Sum $>$
$=>($ SUum $>+$ <Sum > $)+$ <Sum $>$
$=>(\langle$ Sum $>+1)+$ <Sum $>$
$=>(\langle$ Sum $>+1)+0$

BNF Derivations

- Pick a rule and substitute
- <Sum> ::= 0
<Sum> => <Sum> + <Sum >
$=>($ SSum $>$) + <Sum >
$=>($ Sum $>+$ <Sum > $)+$ <Sum $>$
$=>(\langle$ Sum $>+1)+\langle$ Sum \rangle
$=>(\langle$ Sum $\rangle+1) 0$
$=>(0+1)+0$
<Sum> =>

BNF Semantics

- The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol

BNF Derivations

- $(0+1)+0$ is generated by grammar

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+<\text { Sum }> \\
& =>(<\text { Sum }>)+\text { Sum }> \\
& =>(<\text { Sum }>+ \text { Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }> \\
& =>(<\text { Sum }>+1)+0 \\
& =>(0+1)+0
\end{aligned}
$$

Extended BNF Grammars

- Alternatives: allow rules of from $X::=y / z$
- Abbreviates $\mathrm{X}::=y, \mathrm{X}::=z$
- Options: $\mathrm{X}::=y[v] z$
- Abbreviates $\mathrm{X}::=y v z, \mathrm{X}::=y z$
- Repetition: X::=y\{v\}*z
- Can be eliminated by adding new nonterminal V and rules $\mathrm{X}::=y z, \mathrm{X}::=\mathrm{yV}$, V::=v, V::=W

Example

- Regular grammar:
<Balanced> ::= ع
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1 <Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 's as 1's

Example

- Consider grammar:

```
<exp> ::= <factor>
    | <factor> + <factor>
    <factor> ::= <bin>
    | <bin> * <exp>
    <bin> ::= 0 | 1
```

- Problem: Build parse tree for 1 * $1+0$ as an <exp>

Example cont.

- 1 * $1+0$: <exp>
<exp> is the start symbol for this parse tree

Example cont.

- 1 * $1+0$:

$$
\begin{aligned}
& \text { <exp> } \\
& \text { <factor> }
\end{aligned}
$$

Use rule: <exp> ::= <factor>

Example cont.

- 1 * $1+0$:

Use rules: <bin> ::= 1 and <exp> ::= <factor> + <factor>

Example cont.

- 1 * $1+0$:

Use rules: <bin> ::= 1|0

Example cont.

- 1 * $1+0$: <exp>

Use rule: <factor> ::= <bin> * <exp>

10/20/11

Example cont.

- $1 * 1+0: \quad$ <exp>

Use rule: <factor> ::= <bin>
10/20/11
34

Example cont.

- 1 * $1+0$: <exp>

Fringe of tree is string generated by grammar 10/20/11

Your Turn: 1 * $0+0$ * 1

Example

- Recall grammar:
<exp> ::= <factor> | <factor> + <factor> <factor> ::= <bin> | <bin> * <exp> <bin>::= 0 | 1
- type exp = Factor2Exp of factor
| Plus of factor * factor
and factor $=$ Bin2Factor of bin
| Mult of bin * exp
and bin $=$ Zero | One

Example cont.

- Can be represented as

Factor2Exp
(Mult(One,
Plus(Bin2Factor One, Bin2Factor Zero)))

Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example cont.

- $1^{*} 1+0: \quad<\exp >$

10/20/11
40

Ambiguous Grammars and Languages

- A BNF grammar is ambiguous if its language contains strings for which there is more than one parse tree
- If all BNF's for a language are ambiguous then the language is inherently ambiguous

Example: Ambiguous Grammar

- $0+1+0$

Example

- What is the result for:

$$
3+4 * 5+6
$$

- Possible answers:
- $41=((3+4) * 5)+6$
- $47=3+(4 *(5+6))$
- $29=(3+(4 * 5))+6=3+((4 * 5)+6)$
- $77=(3+4) *(5+6)$

Example

- What is the value of:

$$
7-5-2
$$

- Possible answers:
- In Pascal, C++, SML assoc. left $7-5-2=(7-5)-2=0$
- In APL, associate to right

$$
7-5-2=7-(5-2)=4
$$

Example

- What is the result for:

$$
3+4 * 5+6
$$

Example

- What is the value of:

$$
7-5-2
$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity
- Not the only sources of ambiguity

How to Enforce Associativity

- Have at most one recursive call per production
- When two or more recursive calls would be natural leave right-most one for right assoicativity, left-most one for left assoiciativity

Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly).
- Precedence for infix binary operators given in following table
- Needs to be reflected in grammar

First Example Again

- In any above language, $3+4$ * $5+6$ = 29
- In APL, all infix operators have same precedence
- Thus we still don't know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Example

- <Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
- Becomes
- <Sum> ::= <Num> | <Num> + <Sum>
- <Num> ::=0|1|(<Sum>)

Precedence Table - Sample

	Fortan	Pascal	C/C++	Ada	SML
highest	$* *$	$*, /$, div, mod	,++--	$* *$	div, mod, / ,
	$*, /$,+-	$* / /$, $\%$	$*, /$, mod	,,+- \wedge
	,+-		,+-	,+-	$::$

10/20/11

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
<exp> ::= <id> | <exp> + <exp>
| <exp> * <exp>
- Becomes
<exp> ::= <mult_exp>
| <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

