
9/13/11 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/13/11 2

CPS Transformation

  Step 1: Add continuation argument to any function
definition:
  let f arg = e ⇒ let f arg k = e
  Idea: Every function takes an extra parameter

saying where the result goes

  Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:
  return a ⇒ k a
  Assuming a is a constant or variable.
  “Simple” = “No available function calls.”

9/13/11 3

CPS Transformation

  Step 3: Pass the current continuation to every
function call in tail position
  return f arg1 … argn ⇒ f arg1 … argn k
  The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

  Step 4: Each function call not in tail position needs
to be built into a new continuation (containing the
old continuation as appropriate)
  return op (f arg) ⇒ f arg (fun r -> k(op r))
  op represents a primitive operation

  return f(g arg) ⇒ g arg (fun r-> f r k)

9/13/11 4

9/13/11 5

Example

Before:
let rec add_list lst =
match lst with
 [] -> 0
| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =
 (* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k
 (* rule 3 *)
| x :: xs -> add_listk xs
 (fun r -> k ((+) x r));;
 (* rule 4 *)

Other Uses for Continuations

  CPS designed to preserve order of
evaluation

  Continuations used to express order of
evaluation

  Can be used to change order of evaluation
  Implements:

  Exceptions and exception handling
  Co-routines
  (pseudo) threads

9/13/11 6

9/13/11 7

Exceptions - Example

exception Zero;;
exception Zero
let rec list_mult_aux list =
 match list with [] -> 1
 | x :: xs ->
 if x = 0 then raise Zero
 else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

9/13/11 8

Exceptions - Example

let list_mult list =
 try list_mult_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
list_mult_aux [7;4;0];;
Exception: Zero.

9/13/11 9

Exceptions

 When an exception is raised
 The current computation is aborted
 Control is “thrown” back up the call

stack until a matching handler is
found

 All the intermediate calls waiting for a
return value are thrown away

9/13/11 10

Implementing Exceptions

let multkp m n k =
 let r = m * n in
 (print_string "product result: ";
 print_int r; print_string "\n";
 k r);;
val multkp : int -> int -> (int -> 'a) -> 'a

= <fun>

9/13/11 11

Implementing Exceptions

let rec list_multk_aux list k kexcp =
 match list with [] -> k 1
 | x :: xs -> if x = 0 then kexcp 0
 else list_multk_aux xs
 (fun r -> multkp x r k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/13/11 12

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

9/13/11 13

Variants - Syntax (slightly simplified)

  type name = C1 [of ty1] | . . . | Cn [of tyn]
  Introduce a type called name
  (fun x -> Ci x) : ty1 -> name
  Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
  Constructors are the basis of almost all

pattern matching

9/13/11 14

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

9/13/11 15

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
type weekday =
 Monday
 | Tuesday
 | Wednesday
 | Thursday
 | Friday
 | Saturday
 | Sunday

9/13/11 16

Functions over Enumerations

let day_after day = match day with
 Monday -> Tuesday
 | Tuesday -> Wednesday
 | Wednesday -> Thursday
 | Thursday -> Friday
 | Friday -> Saturday
 | Saturday -> Sunday
 | Sunday -> Monday;;
 val day_after : weekday -> weekday = <fun>

9/13/11 17

Functions over Enumerations

let rec days_later n day =
 match n with 0 -> day
 | _ -> if n > 0
 then day_after (days_later (n - 1) day)
 else days_later (n + 7) day;;
val days_later : int -> weekday -> weekday

= <fun>

9/13/11 18

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

9/13/11 19

Disjoint Union Types

  Disjoint union of types, with some possibly
occurring more than once

  We can also add in some new singleton
elements

ty1 ty2 ty1

9/13/11 20

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>

9/13/11 21

Polymorphism in Variants

  The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

  Used to encode partial functions
  Often can replace the raising of an exception

9/13/11 22

Functions over option

let rec first p list =
 match list with [] -> None
 | (x::xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

9/13/11 23

Mapping over Variants

let optionMap f opt =
 match opt with None -> None
 | Some x -> Some (f x);;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>
optionMap
 (fun x -> x - 2)
 (first (fun x -> x > 3) [1;3;4;2;5]);;
- : int option = Some 2

9/13/11 24

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option ->

'b = <fun>
let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>

9/13/11 25

Recursive Types

  The type being defined may be a component
of itself

ty ty’ ty

9/13/11 26

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree *

int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/13/11 27

Recursive Data Type Values

let bin_tree =
 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

9/13/11 28

Recursive Data Type Values

 bin_tree = Node

 Node Leaf (-7)

Leaf 3 Leaf 6

9/13/11 29

Recursive Functions

let rec first_leaf_value tree =
 match tree with (Leaf n) -> n
 | Node (left_tree, right_tree) ->
 first_leaf_value left_tree;;
val first_leaf_value : int_Bin_Tree -> int =

<fun>
let left = first_leaf_value bin_tree;;
val left : int = 3

9/13/11 30

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with (Leaf n) -> Leaf (f n)
 | Node (left_tree, right_tree) ->
 Node (ibtreeMap f left_tree,
 ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

9/13/11 31

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

9/13/11 32

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with Leaf n -> leafFun n
 | Node (left_tree, right_tree) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun left_tree)
 (ibtreeFoldRight leafFun nodeFun right_tree);;
val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->

int_Bin_Tree -> 'a = <fun>

9/13/11 33

Folding over Recursive Types

let tree_sum =
 ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

9/13/11 34

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
 | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
 | More of ('a tree * 'a treeList);;
type 'a tree = TreeLeaf of 'a | TreeNode of 'a

treeList
and 'a treeList = Last of 'a tree | More of ('a

tree * 'a treeList)

9/13/11 35

Mutually Recursive Types - Values

let tree =
 TreeNode
 (More (TreeLeaf 5,
 (More (TreeNode
 (More (TreeLeaf 3,
 Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))));;

9/13/11 36

Mutually Recursive Types - Values

 val tree : int tree =
 TreeNode
 (More
 (TreeLeaf 5,
 More
 (TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

9/13/11 37

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2
9/13/11 38

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

9/13/11 39

Mutually Recursive Functions

let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

9/13/11 40

Mutually Recursive Functions

fringe tree;;
-  : int list = [5; 3; 2; 7]

9/13/11 41

Nested Recursive Types

type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree

list);;
type 'a labeled_tree = TreeNode of ('a

* 'a labeled_tree list)

9/13/11 42

Nested Recursive Type Values

let ltree =
 TreeNode(5,
 [TreeNode (3, []);
 TreeNode (2, [TreeNode (1, []);
 TreeNode (7, [])]);
 TreeNode (5, [])]);;

9/13/11 43

Nested Recursive Type Values

val ltree : int labeled_tree =
 TreeNode
 (5,
 [TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])

9/13/11 44

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

9/13/11 45

Nested Recursive Type Values

5

3 2 5

1 7

9/13/11 46

Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with TreeNode (x,treelist)
 -> x::flatten_tree_list treelist
 and flatten_tree_list treelist =
 match treelist with [] -> []
 | labtree::labtrees
 -> flatten_tree labtree
 @ flatten_tree_list labtrees;;

9/13/11 47

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
  Nested recursive types lead to mutually

recursive functions

9/13/11 48

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
 [1; 1; 1; 1; ...]
match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
 match ones with x::_ -> x;;
 ^^^^^^^^^^^^^^^^^^^^^^^^^
- : int = 1

9/13/11 49

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
 and tree_list = [lab_tree; lab_tree];;

9/13/11 50

Infinite Recursive Values

val lab_tree : int labeled_tree =
 TreeNode (2, [TreeNode(...); TreeNode(...)])
val tree_list : int labeled_tree list =
 [TreeNode (2, [TreeNode(...); TreeNode

(...)]);
 TreeNode (2, [TreeNode(...); TreeNode

(...)])]

9/13/11 51

Infinite Recursive Values

match lab_tree
 with TreeNode (x, _) -> x;;
- : int = 2

9/13/11 52

Records

  Records serve the same programming
purpose as tuples

  Provide better documentation, more
readable code

  Allow components to be accessed by label
instead of position
  Labels (aka field names must be unique)
  Fields accessed by suffix dot notation

9/13/11 53

Record Types

  Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

  person is the type being introduced
  name, ss and age are the labels, or fields

9/13/11 54

Record Values

  Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
 {name = "Elsa L. Gunter"; ss = (119, 73,

6244); age = 102}

9/13/11 55

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
 {name = "Joseph Martins"; ss = (325, 40,

1276); age = 22}
student = teacher;;
- : bool = false

9/13/11 56

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

9/13/11 57

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119,

73, 6244)

9/13/11 58

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

9/13/11 59

New Records from Old

let new_id name soc_sec person =
 {person with name = name; ss = soc_sec};;
val new_id : string -> int * int * int -> person

-> person = <fun>
new_id "Guieseppe Martin" (523,04,6712)

student;;
- : person = {name = "Guieseppe Martin"; ss

= (523, 4, 6712); age = 22}

