
9/8/11 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/8/11 2

Continuations

  A programming technique for all forms
of “non-local” control flow:
  non-local jumps
  exceptions
  general conversion of non-tail calls to tail

calls

  Essentially it’s a higher-order function
version of GOTO

9/8/11 3

Continuations

  Idea: Use functions to represent the control
flow of a program

  Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

  Function receiving the result called a
continuation

  Continuation acts as “accumulator” for work
still to be done

9/8/11 4

Example of Tail Recursion

let rec app fl x =
 match fl with [] -> x
 | (f :: rem_fs) -> f (app rem_fs x);;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

9/8/11 5

Continuation Passing Style

  Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

9/8/11 6

Example of Tail Recursion & CSP

let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let rec appk fl x k =
 match fl with [] -> k x
 | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;
val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

9/8/11 7

Continuation Passing Style

  A compilation technique to implement non-
local control flow, especially useful in
interpreters.

  A formalization of non-local control flow in
denotational semantics

  Possible intermediate state in compiling
functional code

Why CPS?

  Makes order of evaluation explicitly clear
  Allocates variables (to become registers) for each

step of computation
  Essentially converts functional programs into

imperative ones
  Major step for compiling to assembly or byte

code
  Tail recursion easily identified
  Strict forward recursion converted to tail recursion

9/8/11 8

9/8/11 9

Example

  Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

  Simple function using a continuation:
let addk a b k = k (a + b)
val addk : int -> int -> (int -> ’a) -> ’a = <fun>
addk 22 20 report;;
2
- : unit = ()

Simple Functions Taking Continuations

  Given a primitive operation, can convert it to
pass its result forward to a continuation

  Examples:
let subk x y k = k(x + y);;
val timesk : int -> int -> (int -> 'a) -> 'a = <fun>
let eqk x y k = k(x = y);;
val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>
let timesk x y k = k(x * y);;
val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

9/8/11 10

Nesting Continuations

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three x y z= let p = x + y in p + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three_k x y z k =
 addk x y (fun p -> addk p z k);;
val add_three_k : int -> int -> int -> (int -> 'a)

-> 'a = <fun>

9/8/11 11

9/8/11 12

Recursive Functions

  Recall:
let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/8/11 13

Recursive Functions

let rec factorial n =
 let b = (n = 0) in (* First computation *)
 if b then 1 (* Returned value *)
 else let s = n – 1 in (* Second computation *)
 let r = factorial s in (* Third computation *)
 n * r in (* Returned value *) ;;
val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/8/11 14

Recursive Functions

let rec factorialk n k =
 eqk n 0
 (fun b -> (* First computation *)
 if b then k 1 (* Passed value *)
 else subk n 1 (* Second computation *)
 (fun s -> factorialk s (* Third computation *)
 (fun r -> timesk n r k))) (* Passed value *)
val factorialk : int -> int = <fun>
factorialk 5 report;;
120
- : unit = ()

9/8/11 15

Recursive Functions

  To make recursive call, must build
intermediate continuation to
  take recursive value: r
 build it to final result: n * r
 And pass it to final continuation:
  times n r k = k (n * r)

9/8/11 16

CPS for length

let rec lengthk list k = match list with [] -> k 0
 | x :: xs -> lengthk xs (fun r -> k (r + 1));;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
let rec lengthk list k = match list with [] -> k 0
 | x :: xs -> lengthk xs (fun r -> addk r 1 k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- : unit = ()

9/8/11 17

Terminology

  Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
  if (x>3) then x + 2 else x - 4
  let x = 5 in x + 4

  Tail Call: A function call that occurs in
tail position
  if (h x) then f x else (x + g x)

9/8/11 18

Terminology

  Available: A function call that can be
executed by the current expression

  The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function).
  if (h x) then f x else (x + g x)
  if (h x) then (fun x -> f x) else (g (x + x))

9/8/11 19

CPS Transformation

  Step 1: Add continuation argument to any function
definition:
  let f arg = e ⇒ let f arg k = e
  Idea: Every function takes an extra parameter

saying where the result goes

  Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:
  return a ⇒ k a
  Assuming a is a constant or variable.
  “Simple” = “No available function calls.”

9/8/11 20

CPS Transformation

  Step 3: Pass the current continuation to every
function call in tail position
  return f arg ⇒ f arg k
  The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

  Step 4: Each function call not in tail position needs
to be built into a new continuation (containing the
old continuation as appropriate)
  return op (f arg) ⇒ f arg (fun r -> k(op r))
  op represents a primitive operation

  return f(g arg) ⇒ g arg (fun r-> f r k)

9/8/11 21

9/8/11 22

Example

Before:
let rec add_list lst =
match lst with
 [] -> 0
| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =
 (* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k
 (* rule 3 *)
| x :: xs -> add_listk xs
 (fun r -> k ((+) x r));;
 (* rule 4 *)

Other Uses for Continuations

  CPS designed to preserve order of
evaluation

  Continuations used to express order of
evaluation

  Can be used to change order of evaluation
  Implements:

  Exceptions and exception handling
  Co-routines
  (pseudo) threads

9/8/11 23

9/8/11 24

Exceptions - Example

exception Zero;;
exception Zero
let rec list_mult_aux list =
 match list with [] -> 1
 | x :: xs ->
 if x = 0 then raise Zero
 else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

9/8/11 25

Exceptions - Example

let list_mult list =
 try list_mult_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
list_mult_aux [7;4;0];;
Exception: Zero.

9/8/11 26

Exceptions

 When an exception is raised
 The current computation is aborted
 Control is “thrown” back up the call

stack until a matching handler is
found

 All the intermediate calls waiting for a
return value are thrown away

9/8/11 27

Implementing Exceptions

let multkp m n k =
 let r = m * n in
 (print_string "product result: ";
 print_int r; print_string "\n";
 k r);;
val multkp : int -> int -> (int -> 'a) -> 'a

= <fun>

9/8/11 28

Implementing Exceptions

let rec list_multk_aux list k kexcp =
 match list with [] -> k 1
 | x :: xs -> if x = 0 then kexcp 0
 else list_multk_aux xs
 (fun r -> multkp x r k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/8/11 29

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

