Programming Languages and
Compilers (CS 421)

¥

Elsa L Gunter
2112 SC, UluC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/31/11 1

‘ Recursion Example

Compute n? recursively using:
n=(2*n-1)+ (n-1)?
let rec nthsq n = (* rec for recursion *)

match n (* pattern matching for cases *)
with0-> 0 (* base case *)
[n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- 1int=9

Structure of recursion similar to inductive proof

8/31/11 2

i Recursion and Induction

let rec nthsq n = match n with 0 -> 0
[n->(2*n-1)+nthsq(n-1);;

Base case is the last case; it stops the computation

Recursive call must be to arguments that are
somehow smaller - must progress to base case

= if or match must contain base case
= Failure of these may cause failure of termination

8/31/11 3

* Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

8/31/11 4

iStructuraI Recursion : List Example

let rec length list = match list
with []->0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list xs

8/31/11 5

i Forward Recursion

= In structural recursion, you split your input into
components

= Forward recursion limited form of structural
recursion

= In forward recursion:

= First call function recursively on all recursive
components

= Recursive calls use only components and input
agruments, no other computation

= Build result from results of component

8/31/11 6

iForward Recursion: Examples

let rec double_up list =
match list
with[]->1[1
| (x::xs)-> (x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [1-> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

8/31/11 7

iMapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
with[]->[]
| X::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1 int list = [4; 6; 8]

8/31/11 8

i Recall Map

let rec map f list =
match list
with [] -> []
| (h::t) -> (fFh) :: (map ft);;
val map : (‘a->'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-:intlist =[10; 7; 5; 4; 3; 3]

= Same as List.map

8/31/11 9

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion
let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- rintlist = [4; 6; 8]
= Same function, but no rec

8/31/11 10

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4,6];;
-:int =48
= Computes (2 * (4 * (6 * 1))

8/31/11 11

iFoIding Recursion

= multList folds to the right
= Same as:
let multList list =
List.fold_right
(funp->funx->x *p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

8/31/11 12

Folding Functions over Lists

| How are the following functions similar? |

let rec sumlist list = match list with
[1->0] x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-rint=9

let rec prodlist list = match list with
[]1-> 1] x::xs-> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-:int =24

8/31/11 13

iFoIding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->'a->'blist->'a=
<fun>
fold_left f a [x;; X5;...;%,] = f(...(f (f @ X;) X5)...)X,

let rec fold_right f list b = match list
with [1-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b)->'"alist->'b->'b =
<fun>
|fo|d_right f [Xg; Xop..iXn] B = FX,(F X, (...(F X, D)...)) |

8/31/11 14

* Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- rint=24

8/31/11 15

* Encoding Recursion with Fold

let rec append list1 list2 = match listl with
[]->list2 | x::xs -> x :: append xs list2;;
val apa@nd :'alist -> |a list ->§§ list = <fun>

| Base Case | |Operation || Recursive Call |

let append listl list2=
fold_right (fun x y -> x :7'y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-:intlist = [1; 2; 3; 4; 5; 6]

8/31/11 16

iMap from Fold

let map f list =

fold_right (funxy -> fx i y) list[];;

valmap : ('a->'b) -> 'a list -> 'b list =
<fun>

map ((+)1) [1;2;3];;

- rintlist = [2; 3; 4]

= Can you write fold_right (or fold_left)
with just map? How, or why not?

8/31/11 17

iAn Important Optimization

= When a function call is made,
Normal the return address needs to be

call saved to the stack so we know
to where to return when the
<: h call is finished
a g = What if fcalls gand g calls h,
¢ but calling A is the last thing g
does (a tail call)?

8/31/11 18

iAn Important Optimization

= When a function call is made,
Tail the return address needs to be
call saved to the stack so we know
to where to return when the
[h call is finished

f = What if fcalls gand g calls h,
but calling his the last thing g
does (a tail call)?

= Then h can return directly to 7
instead of g

8/31/11 19

‘ Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

8/31/11 20

‘ Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| x i1 xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

8/31/11 21

‘ Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @ [2]) @ [1] =
= ([J@[B) @[2])) @[1]) =

= (31@2) @[1] =

= Gu((l@2)) @[1] =

= [32]@[1] =

= 3:u([2]@[1]) =

=3 (1@[)=1[3 2, 1]

8/31/11 22

i Comparison

= rev[1,2,3] =
mrev_aux[1,2,3][]=

= rev_aux [2,3] [1] =

= rev_aux [3][2,1] =

= rev_aux [][3,2,1] = [3,2,1]

8/31/11 23

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

8/31/11 2

