
8/31/11 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/31/11 2

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
 match n (* pattern matching for cases *)
 with 0 -> 0 (* base case *)
 | n -> (2 * n -1) (* recursive case *)
 + nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
-  : int = 9

Structure of recursion similar to inductive proof

8/31/11 3

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
 | n -> (2 * n - 1) + nthsq (n - 1) ;;

  Base case is the last case; it stops the computation
  Recursive call must be to arguments that are

somehow smaller - must progress to base case
  if or match must contain base case
  Failure of these may cause failure of termination

8/31/11 4

Structural Recursion

  Functions on recursive datatypes (eg lists)
tend to be recursive

  Recursion over recursive datatypes generally
by structural recursion
  Recursive calls made to components of structure

of the same recursive type
  Base cases of recursive types stop the recursion

of the function

8/31/11 5

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
  Nil case [] is base case
  Cons case recurses on component list xs

8/31/11 6

Forward Recursion

  In structural recursion, you split your input into
components

  Forward recursion limited form of structural
recursion

  In forward recursion:

  First call function recursively on all recursive
components

  Recursive calls use only components and input
agruments, no other computation

  Build result from results of component

8/31/11 7

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

8/31/11 8

Mapping Recursion

  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

8/31/11 9

Recall Map

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
  Same as List.map

8/31/11 10

Mapping Recursion

  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

  Same function, but no rec

8/31/11 11

Folding Recursion

  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
  Computes (2 * (4 * (6 * 1)))

8/31/11 12

Folding Recursion

  multList folds to the right
  Same as:
let multList list =
 List.fold_right
 (fun p -> fun x -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

8/31/11 13

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

8/31/11 14

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

8/31/11 15

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

8/31/11 16

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

8/31/11 17

Map from Fold

let map f list =
 fold_right (fun x y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
  Can you write fold_right (or fold_left)

with just map? How, or why not?

8/31/11 18

Normal
call

h

g

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

8/31/11 19

Tail
call

h

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

  Then h can return directly to f
instead of g

8/31/11 20

Tail Recursion

  A recursive program is tail recursive if all
recursive calls are tail calls

  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
  May require an auxiliary function

8/31/11 21

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

  What is its running time?

8/31/11 22

Comparison

  poor_rev [1,2,3] =
  (poor_rev [2,3]) @ [1] =
  ((poor_rev [3]) @ [2]) @ [1] =
  (((poor_rev []) @ [3]) @ [2]) @ [1] =
  (([] @ [3]) @ [2]) @ [1]) =
  ([3] @ [2]) @ [1] =
  (3:: ([] @ [2])) @ [1] =
  [3,2] @ [1] =
  3 :: ([2] @ [1]) =
  3 :: (2:: ([] @ [1])) = [3, 2, 1]

8/31/11 23

Comparison

  rev [1,2,3] =
  rev_aux [1,2,3] [] =
  rev_aux [2,3] [1] =
  rev_aux [3] [2,1] =
  rev_aux [] [3,2,1] = [3,2,1]

8/31/11 24

Folding

  Can replace recursion by fold_right in any
forward primitive recursive definition
  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

  Can replace recursion by fold_left in any tail
primitive recursive definition

