
8/31/11 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/31/11 2

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
 match n (* pattern matching for cases *)
 with 0 -> 0 (* base case *)
 | n -> (2 * n -1) (* recursive case *)
 + nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
-  : int = 9

Structure of recursion similar to inductive proof

8/31/11 3

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
 | n -> (2 * n - 1) + nthsq (n - 1) ;;

  Base case is the last case; it stops the computation
  Recursive call must be to arguments that are

somehow smaller - must progress to base case
  if or match must contain base case
  Failure of these may cause failure of termination

8/31/11 4

Structural Recursion

  Functions on recursive datatypes (eg lists)
tend to be recursive

  Recursion over recursive datatypes generally
by structural recursion
  Recursive calls made to components of structure

of the same recursive type
  Base cases of recursive types stop the recursion

of the function

8/31/11 5

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
  Nil case [] is base case
  Cons case recurses on component list xs

8/31/11 6

Forward Recursion

  In structural recursion, you split your input into
components

  Forward recursion limited form of structural
recursion

  In forward recursion:

  First call function recursively on all recursive
components

  Recursive calls use only components and input
agruments, no other computation

  Build result from results of component

8/31/11 7

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

8/31/11 8

Mapping Recursion

  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

8/31/11 9

Recall Map

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
  Same as List.map

8/31/11 10

Mapping Recursion

  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

  Same function, but no rec

8/31/11 11

Folding Recursion

  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
  Computes (2 * (4 * (6 * 1)))

8/31/11 12

Folding Recursion

  multList folds to the right
  Same as:
let multList list =
 List.fold_right
 (fun p -> fun x -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

8/31/11 13

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

8/31/11 14

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

8/31/11 15

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

8/31/11 16

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

8/31/11 17

Map from Fold

let map f list =
 fold_right (fun x y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
  Can you write fold_right (or fold_left)

with just map? How, or why not?

8/31/11 18

Normal
call

h

g

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

8/31/11 19

Tail
call

h

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

  Then h can return directly to f
instead of g

8/31/11 20

Tail Recursion

  A recursive program is tail recursive if all
recursive calls are tail calls

  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
  May require an auxiliary function

8/31/11 21

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

  What is its running time?

8/31/11 22

Comparison

  poor_rev [1,2,3] =
  (poor_rev [2,3]) @ [1] =
  ((poor_rev [3]) @ [2]) @ [1] =
  (((poor_rev []) @ [3]) @ [2]) @ [1] =
  (([] @ [3]) @ [2]) @ [1]) =
  ([3] @ [2]) @ [1] =
  (3:: ([] @ [2])) @ [1] =
  [3,2] @ [1] =
  3 :: ([2] @ [1]) =
  3 :: (2:: ([] @ [1])) = [3, 2, 1]

8/31/11 23

Comparison

  rev [1,2,3] =
  rev_aux [1,2,3] [] =
  rev_aux [2,3] [1] =
  rev_aux [3] [2,1] =
  rev_aux [] [3,2,1] = [3,2,1]

8/31/11 24

Folding

  Can replace recursion by fold_right in any
forward primitive recursive definition
  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

  Can replace recursion by fold_left in any tail
primitive recursive definition

