Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC

http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Question

- Observation: Functions are first-class values in this language
- Question: What value does the environment record for a function variable?
- Answer: a closure

Save the Environment!

- A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

$$
\left.\mathrm{f} \rightarrow<(\mathrm{v} 1, \ldots, \mathrm{vn}) \rightarrow \exp , \rho_{\mathrm{f}}\right\rangle
$$

- Where ρ_{f} is the environment in effect when f is defined (if f is a simple function)

Closure for plus_x

- When plus_x was defined, had environment:

$$
\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}
$$

- Closure for plus_x:

$$
\left\langle y \rightarrow y+x, \rho_{\text {plus_x }}>\right.
$$

- Environment just after plus_x defined:
$\left\{\right.$ plus_ $x \rightarrow\left\langle y \rightarrow y+x, \rho_{\text {plus_x }}>\right\}+\rho_{\text {plus_ }}$

Evaluation of Application of plus_x;;

- Have environment:

$$
\begin{gathered}
\rho=\left\{\text { plus_x } x<y \rightarrow y+x, \rho_{\text {plus_x }}>, \ldots,\right. \\
y \rightarrow 3, \ldots\}
\end{gathered}
$$

where $\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}$

- Eval (plus_x y, ρ) rewrites to
- Eval (app <y $\rightarrow y+x, \rho_{\text {plus_x }}>3, \rho$) rewrites to
- Eval $\left(y+x,\{y \rightarrow 3\}+\rho_{\text {plus_x }}\right)$ rewrites to
- $\operatorname{Eval}\left(3+12, \rho_{\text {plus_x }}\right)=15$

Closure for plus_pair

- Assume $\rho_{\text {plus_pair }}$ environment just before plus_pair defined
- Closure for plus_pair:

$$
<(\mathrm{n}, \mathrm{~m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>
$$

- Environment just after plus_pair defined:
$\left\{\right.$ plus_pair $\left.\rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\}$
$+\rho_{\text {plus_pair }}$

Evaluation of Application with Closures (2)

- Evaluate the left term to a closure, $\mathrm{c}=\left\langle\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{b}, \mathrm{\rho}\right\rangle$
- Evaluate the right term to values, $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
- Update the environment ρ to

$$
\rho^{\prime}=\left\{x_{1} \rightarrow v_{1}, \ldots, x_{n} \rightarrow v_{n}\right\}+\rho
$$

- Evaluate body b in environment ρ^{\prime}

Evaluation of Application of plus_pair

- Assume environment
$\rho=\{x \rightarrow 3 \ldots$,
plus_pair $\left.\rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\}+$
$\rho_{\text {plus_pair }}$
- Eval (plus_pair $(4, x), \rho)=$
- Eval $\left.\left(\operatorname{app}<(n, m) \rightarrow n+m, \rho_{\text {plus_pair }}>(4, x), \rho\right)\right)=$
- Eval $\left.\left(\operatorname{app}<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>(4,3), \rho\right)\right)=$
- Eval $\left(\mathrm{n}+\mathrm{m},\{\mathrm{n}->4, \mathrm{~m}->3\}+\rho_{\text {plus_pair }}\right)=$
- Eval $\left(4+3,\{n->4, m->3\}+\rho_{\text {plus_pair }}\right)=7$

Recursive Functions

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$);;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120
\# (* rec is needed for recursive function declarations *)
(* More on this later *)

Lists

- First example of a recursive datatype (aka algebraic datatype)
- Unlike tuples, lists are homogeneous in type (all elements same type)

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: [x] == x :: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = $13 ; 8 ; 5 ; 3 ; 2 ; 1 ; 1]$
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；； ヘヘヘ

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

- Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

- 3 is invalid because of last pair

Functions Over Lists

\# let rec double_up list = match list with [] -> [] (* pattern before ->, expression after *) | (x :: xs) -> (x :: x :: double_up xs);; val double_up : 'a list -> 'a list = <fun> \# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; $8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1$; 1; 1; 1]

Functions Over Lists

\# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"] \# let rec poor_rev list =
match list
with [] -> []
(x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
\# poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Functions Over Lists

\# let rec map f list $=$
match list
with [] -> []
(h::t) -> (f h) :: (map ft);,
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
\# map plus_two fib5;";

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Iterating over lists

\# let rec fold_left falist = match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;; ;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit $=()$

Iterating over lists

\# let rec fold_right f list $\mathrm{b}=$ match list
with [] -> b
| (x :: xs) -> fx (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s) ["hi"; "there"]
();;
therehi- : unit $=()$

Recursion Example

Compute n^{2} recursively using:

$$
n^{2}=(2 * n-1)+(n-1)^{2}
$$

\# let rec nthsq $\mathrm{n}=\quad$ (* rec for recursion ${ }^{*}$) match $n \quad$ (* pattern matching for cases *)
with 0 -> $0 \quad$ (* base case *)
$\mid \mathrm{n}->(2$ * $\mathrm{n}-1) \quad$ (* recursive case *)

+ nthsq (n-1); ${ }^{\prime}$ (* recursive call *)
val nthsq : int -> int = <fun>
\# nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+\text { nthsq }(n-1) ; ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

\# let rec length list = match list
with [] -> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list xs

Forward Recursion

- In structural recursion, you split your input into components
- In forward recursion, you first call the function recursively on all the recursive components, and then build the final result from the partial results
- Wait until the whole structure has been traversed to start building the answer

Forward Recursion: Examples

\# let rec double_up list = match list with [] -> []
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Mapping Recursion

One common form of structural recursion applies a function to each element in the structure
\# let rec doubleList list = match list with [] -> []
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = [4; 6; 8]

Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = $[4 ; 6 ; 8]$
- Same function, but no rec

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun $\mathrm{x}->$ fun $\mathrm{p}->\mathrm{x} * \mathrm{p}$)
list 1;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48

How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

How long will it take?

Common big-O times:

- Constant time O (1)
- input size doesn't matter
- Linear time $O(n)$
- double input \Rightarrow double time
- Quadratic time $O\left(n^{2}\right)$
- double input \Rightarrow quadruple time
- Exponential time $O\left(2^{n}\right)$
- increment input \Rightarrow double time

Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

\# let rec naiveFib $\mathrm{n}=$ match n

$$
\text { with } 0->0
$$

$$
\text { | } 1 \text {-> } 1
$$

| _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?

An Important Optimization

- When a function call is made,
 the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?
- Then h can return directly to f instead of g

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Tail Recursion - Example

\# let rec rev_aux list revlist = match list with [] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

- What is its running time?

Comparison

- poor_rev $[1,2,3]=$
- (poor_rev [2,3]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- [3,2] @ [1] =
- 3 :: ([2] @ [1]) =
- 3 :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

- $\operatorname{rev}[1,2,3]=$
- rev_aux [1,2,3] [] =
- rev_aux $[2,3][1]=$
- rev_aux [3] [2,1] =
- rev_aux [] [3,2,1] = [3,2,1]

