
8/25/11 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://www.cs.illinois.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/25/11 2

Contact Information - Elsa L Gunter

  Office: 2112 SC
  Office hours:

  Tuesdays 12:30pm – 1:45pm
  Wednesday 11:00am – 11:50am
  Thursdays 3:30pm - 4:15pm
  Also by appointment

  Email: egunter@illinois.edu

8/25/11 3

Contact Information - TAs

  Teaching Assistants Office: 0207 SC
  Dennis Griffith

  Email: dgriffi3@illinois.edu
  Hours: Tues 5:00pm – 5:50pm & Wed 12:30pm

– 1:20pm

  Choonghwan Lee
  Email: clee83@illinois.edu
  Hours: Mon 9:00am - 9:50am & Fri 1:00pm -

1:50pm

8/25/11 4

Course Website

  Main page - summary of news items
  Policy - rules governing course
  Lectures - syllabus and slides
  MPs - information about homework
  Exams
  Unit Projects - for 4 credit students
  Resources - tools and helpful info
  FAQ

8/25/11 5

Some Course References

  No required textbook.
  Essentials of Programming Languages (2nd Edition)

by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

  Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

  Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

  Additional ones for Ocaml given separately

8/25/11 6

Course Grading

  Homework 20%
  About 9 MPs (in Ocaml) and 3 written assignments
  MPs submitted by handin on EWS linux machines
  HWs turned in in class
  Late submission penalty: 20% of assignments total value

  2 Midterms - 20% each
  In class – Oct 11, Nov 10

  DO NOT MISS EXAM DATES!
  Final 40% - Dec 16, 7:00pm – 10:00pm
  Percentages are approximate

  Exams may weigh more if homework is much better

8/25/11 7

Course Homework

  You may discuss homeworks and their solutions
with others

  You may work in groups, but you must list
members with whom you worked if you share
solutions or solution outlines

  Each student must turn in their own solution
separately

  You may look at examples from class and other
similar examples from any source
  Note: University policy on plagiarism still holds - cite your

sources if you are not the sole author of your solution
  Problems from homework may appear verbatim, or

with some modification on exams

8/25/11 8

Course Objectives

  New programming paradigm
  Functional programming
  Tail Recursion
  Continuation Passing Style

  Phases of an interpreter / compiler
  Lexing and parsing
  Type checking
  Evaluation

  Programming Language Semantics
  Lambda Calculus
  Operational Semantics

8/25/11 9

OCAML

  Compiler is on the EWS-linux systems at
  /usr/local/bin/ocaml
  A (possibly better, non-PowerPoint) text

version of this lecture can be found at
  http://www.cs.illinois.edu/class/cs421/

lectures/ocaml-intro-shell.txt
  For the OCAML code for today’s lecture see
  http://www.cs.illinois.edu/class/cs421/

lectures/ocaml-intro.ml

8/25/11 10

WWW Addresses for OCAML

  Main CAML home:
http://caml.inria.fr/index.en.html

  To install OCAML on your computer see:
  http://caml.inria.fr/ocaml/release.en.html

8/25/11 11

References for CAML

  Supplemental texts (not required):

  The Objective Caml system release 3.09, by
Xavier Leroy, online manual

  Introduction to the Objective Caml
Programming Language, by Jason Hickey

  Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O’Reilly
  Available online from course resources

8/25/11 12

OCAML

  CAML is European descendant of original ML
  American/British version is SML
  O is for object-oriented extension

  ML stands for Meta-Language
  ML family designed for implementing

theorem provers
  It was the meta-language for programming the

“object” language of the theorem prover
  Despite obscure original application area, OCAML

is a full general-purpose programming language

8/25/11 13

Features of OCAML

  Higher order applicative language
  Call-by-value parameter passing
  Modern syntax
  Parametric polymorphism

  Aka structural polymorphism

  Automatic garbage collection
  User-defined algebraic data types

  It’s fast - winners of the 1999 and 2000 ICFP
Programming Contests used OCAML

8/25/11 14

Why learn OCAML?

  Many features not clearly in languages you
have already learned

  Assumed basis for much research in
programming language research

  OCAML is particularly efficient for
programming tasks involving languages (eg
parsing, compilers, user interfaces)

  Used at Microsoft for writing SLAM, a formal
methods tool for C programs

8/25/11 15

Session in OCAML

% ocaml
Objective Caml version 3.12.0
(* Read-eval-print loop; expressions and

declarations *)
 2 + 3;; (* Expression *)
- : int = 5

3 < 2;;
- : bool = false

8/25/11 16

No Overloading for Basic Arithmetic Operations

15 * 2;;
- : int = 30
1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
 1.35 + 0.23;; (* Wrong type of addition *)
 ^^^^
Error: This expression has type float but an

expression was expected of type
 int
1.35 +. 0.23;;
- : float = 1.58

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
 1.0 * 2;; (* No Implicit Coercion *)
 ^^^
Error: This expression has type float but an

expression was expected of type
 int

8/25/11 17 8/25/11 18

Sequencing Expressions

"Hi there";; (* has type string *)
- : string = "Hi there"
print_string "Hello world\n";; (* has type unit *)
Hello world
- : unit = ()
(print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye
- : int = 25

8/25/11 19

Terminology

  Output refers both to the result returned
from a function application
  As in + outputs integers, whereas +. outputs

floats
  And to text printed as a side-effect of a

computation
  As in print_string “\n” outputs a carriage return
  In terms of values, it outputs () (“unit”)

  We will standardly use “output” to refer to
the value returned

Declarations; Sequencing of Declarations

let x = 2 + 3;; (* declaration *)
val x : int = 5
let test = 3 < 2;;
val test : bool = false
let a = 3 let b = a + 2;; (* Sequence of dec

*)
val a : int = 3
val b : int = 5

8/25/11 20

8/25/11 21

Environments

  Environments record what value is associated with
a given variable

  Central to the semantics and implementation of a
language

  Notation
ρ = {name1 → value1, name2→ value2, …}

Using set notation, but describes a partial function

  Often stored as list, or stack
  To find value start from left and take first match

8/25/11 22

Global Variable Creation

2 + 3;; (* Expression *)
// doesn’t effect the environment
let test = 3 < 2;; (* Declaration *)
val test : bool = false
// ρ = {test → false}
let a = 3 let b = a + 2;; (* Sequence of dec

*)
// ρ = {b → 5, a → 3, test → false}

8/25/11 23

Local let binding

let b = 5 * 4 in 2 * b;;
- : int = 40
// ρ = {b → 5, a → 3, test → false}
let c =
 let b = a + a
 in b * b;;
val c : int = 36
// ρ = {c → 36, b → 5, a → 3, test → false}
b;;
- : int = 5

8/25/11 24

Local Variable Creation

let c =
 let b = a + a
// ρ1 = {b → 6, a → 3, test → false}
 in b * b;;
 val c : int = 36
// ρ = {c → 36, b → 5, a → 3, test → false}
b;;
- : int = 5

8/25/11 25

Booleans (aka Truth Values)

true;;
- : bool = true
false;;
- : bool = false

if y > x then 25 else 0;;
- : int = 25

8/25/11 26

Booleans

3 > 1 && 4 > 6;;
- : bool = false
3 > 1 || 4 > 6;;
- : bool = true
(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true
3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true
not (4 > 6);;
- : bool = true

Tuples

let s = (5,"hi",3.2);;
val s : int * string * float = (5, "hi", 3.2)
let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2
let x = 2, 9.3;; (* tuples don't require parens in

Ocaml *)
val x : int * float = (2, 9.3)

8/25/11 27

Tuples

(*Tuples can be nested *)
let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)
(*Patterns can be nested *)
let (p,(st,_),_) = d;; (* _ matches all, binds nothing

*)
val p : int * int * int = (1, 4, 62)
val st : string = "bye"

8/25/11 28

8/25/11 29

Functions

let plus_two n = n + 2;;
val plus_two : int -> int = <fun>
plus_two 17;;
- : int = 19
let plus_two = fun n -> n + 2;;
val plus_two : int -> int = <fun>
plus_two 14;;
- : int = 16
First definition syntactic sugar for second

8/25/11 30

Using a nameless function

(fun x -> x * 3) 5;; (* An application *)
- : int = 15
((fun y -> y +. 2.0), (fun z -> z * 3));;

(* As data *)
- : (float -> float) * (int -> int) = (<fun>,

<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

8/25/11 31

Values fixed at declaration time

let x = 12;;
val x : int = 12
let plus_x y = y + x;;
val plus_x : int -> int = <fun>
plus_x 3;;

What is the result?

8/25/11 32

Values fixed at declaration time

let x = 12;;
val x : int = 12
let plus_x y = y + x;;
val plus_x : int -> int = <fun>
plus_x 3;;
- : int = 15

8/25/11 33

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7
plus_x 3;;

What is the result this time?

8/25/11 34

Values fixed at declaration time

let x = 7;; (* New declaration, not an
update *)

val x : int = 7
plus_x 3;;
- : int = 15

Functions on tuples

let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;
- : int = 7
let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

8/25/11 35 8/25/11 36

• Each clause: pattern on
left, expression on right

• Each x, y has scope of
only its clause

• Use first matching clause

Match Expressions

let triple_to_pair triple =

 match triple

 with (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int =
<fun>

8/25/11 37

Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int =

<fun>
let t = add_three 6 3 2;;
val t : int = 11

8/25/11 38

Curried vs Uncurried

  Recall
val add_three : int -> int -> int -> int = <fun>
  How does it differ from
let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>

  add_three is curried;
  add_triple is uncurried

8/25/11 39

Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
let g = thrice plus_two;;
val g : int -> int = <fun>
g 4;;
- : int = 10
thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

8/25/11 40

Curried vs Uncurried

add_triple (6,3,2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5,4,x);;
: int -> int = <fun>

8/25/11 41

Partial application of functions

 let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>
h 3;;
- : int = 12
h 7;;
- : int = 16

8/25/11 42

Question

  Observation: Functions are first-class values
in this language

  Question: What value does the environment
record for a function variable?

  Answer: a closure

8/25/11 43

Save the Environment!

  A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f → < (v1,…,vn) → exp, ρf >

  Where ρf is the environment in effect when f
is defined (if f is a simple function)

8/25/11 44

Closure for plus_x

  When plus_x was defined, had environment:

ρplus_x = {x → 12, …, y → 24, …}

  Closure for plus_x:

<y → y + x, ρplus_x >

  Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

8/25/11 45

Closure for plus_pair

  Assume ρplus_pair was the environment just

before plus_pair defined

  Closure for plus_pair:

<(n,m) → n + m, ρplus_pair>

  Environment just after plus_pair defined:

 {plus_pair → <(n,m) → n + m, ρplus_pair >}

+ ρplus_pair

8/25/11 46

Evaluation of Application of plus_x;;

  Have environment:
 ρ = {plus_x → <y → y + x, ρplus_x >, … ,

 y → 3, …}
 where ρplus_x = {x → 12, … , y → 24, …}

  Eval (plus_x y, ρ) rewrites to
  Eval (app <y → y + x, ρplus_x > 3, ρ)

rewrites to
  Eval (y + x, {y → 3} +ρplus_x) rewrites to
  Eval (3 + 12 , ρplus_x) = 15

8/25/11 47

Consider this code:

let x = 27;;
let f x =
 let x = 5 in
 (fun x -> print_int x) 10;;
f 12;;
What value is printed?
 5
10
12
27

Scoping Question

8/25/11 48

Recursive Functions

let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)
 (* More on this later *)

8/25/11 49

Evaluation of Application with Closures (2)

  Evaluate the left term to a closure,
c = <(x1,…,xn) → b, ρ>

  Evaluate the right term to values, (v1,…,vn)

  Update the environment ρ to

 ρ’ = {x1 → v1,…, xn →vn}+ ρ

  Evaluate body b in environment ρ’

