CS421 Fall 2011 Midterm 2

Thursday, November 10, 2011

Name:	
NetID:	

- You have $\mathbf{7 5}$ minutes to complete this exam.
- This is a closed-book exam. You are allowed one 3 inch by 5 inch card of notes prepared by yourself. This card is not to be shared. All other materials, besides pens, pencils and erasers, are to be away.
- Do not share anything with other students. Do not talk to other students. Do not look at another student's exam. Do not expose your exam to easy viewing by other students. Violation of any of these rules will count as cheating.
- If you believe there is an error, or an ambiguous question, you may seek clarification from myself or one of the TAs. You must use a whisper, or write your question out. Speaking out aloud is not allowed.
- Including this cover sheet and rules at the end, there are 20 pages to the exam. Please verify that you have all 20 pages.
- Please write your name and NetID in the spaces above, and also at the top of every page.

Problem	Possible Points	Points Earned
1	8	
2	16	
3	21	
4	12	
5	12	
6	100	
7	10	
PreTotal	110	
Extra Credit		
PostTotal	10	

\qquad

1. (8 points) Recall that we use the following OCaml types to represent the types of PicoML, the language we have been implementing since MP4:
type typeVar =int type constTy = \{name : string; arity : int $\}$
type monoTy = TyVar of typeVar I TyConst of (constTy * monoTy list)
In MP6, you were asked to implement unification of systems of type constraints, where a system of type constraints is represented as a list of pairs of types. Each pair in the constraints represents an equation to be solved, and unification, if it succeeds returns a simultaneous substitution such that applying this substitution to every pair in the constraint system results in the first component becoming identical to the second. In addition to the base case, and the error case, there are four main steps to unification, as described in class. Give an implementation in OCaml of the Decompose step of unify : (monoTy * monoTy) list -> (typeVar * monoTy) list option described by:

If C is a nonempty constraint set such that $(s, t) \in C$ and $C^{\prime}=C \backslash\{(s, t)\}$, then (Decompose) if $s=\operatorname{TyConst}\left(\right.$ name, $\left.\left[s_{l}, \ldots, s_{n}\right]\right)$ and $t=\operatorname{TyConst}\left(\right.$ name $\left.^{\prime},\left[t_{l}, \ldots, t_{m}\right]\right)$ then if name $=$ name' and $n=m$, then unify $C=$ unify $\left(\left\{\left(s_{l}, t_{l}\right), \ldots,\left(s_{l}, t_{l}\right)\right\} \cup C^{\prime}\right.$, while if name \neq name' or $n \neq m$, then no unifying substitution exists.

You may use List.fold_left, List.fold_right, List.map and @. Any other auxiliary functions should be defined.

Solution:

let rec addNewEqs 1st1 lst2 acc $=$ match 1st1,1st2 with
[],[] -> Some acc
l t::tl, t'::tl' -> addNewEqs tl tl' ((t,t')::acc)
I_-> None
let rec unify c =
match c with (s, t) :: c' ->
(match (s,t) with (TyConst(str, tl), TyConst(str', tl'))::eqs when str=str' ->
(match (addNewEqs tl tl' eqs) with
None -> None
| Some l-> unify l)
I...)
I...)
\qquad
2. (16 pts total) In parts a) and c) you are to give a regular expression generating each of the following languages over the alphabet $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$. You should use the notation fro basic regular expressions given in class: Regular expressions over an alphabet Σ are strings over Σ together with the five extra characters $(), *,$,$v , and \varepsilon$. No other symbols should occur in your regular expression, and they will not be accepted. In parts b) and d) you are asked to give a regular grammar for the languages in a) and c).
a. (4 pts) Give a regular expression for the set of all strings, where a occurs exactly in positions that are multiples of 3 . We will number positions starting from the left with 1 .

Solution:

$((\mathrm{b} \vee \mathrm{c})(\mathrm{b} \vee \mathrm{c}) \mathbf{a})^{*}(\mathrm{~b} \vee \mathbf{c} \vee \varepsilon)(\mathrm{b} \vee \mathrm{c} \vee \varepsilon)$
b. (4 pts) Give a right regular grammar for the set of all strings, where a occurs exactly in positions that are multiples of 3 . We will number positions starting from the left with 1.

Solution:

$\mathrm{S}::=\mathrm{b}$ T $\mid \mathrm{c}$ T $\mid \varepsilon$
$\mathrm{T}::=\mathrm{bR}|\mathrm{cR}| \varepsilon$
R : := a S

Start symbol S
\qquad
2. (cont) In parts a) and c) you are to give a regular expression generating each of the following languages over the alphabet $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$. You should use the notation fro basic regular expressions given in class: Regular expressions over an alphabet Σ are strings over Σ together with the five extra characters (,), *, v, and $\boldsymbol{\varepsilon}$. No other symbols should occur in your regular expression, and they will not be accepted. In parts b) and d) you are asked to give a regular grammar for the languages in a) and c).
c. (4 pts) Give a regular expression for the set of all strings such that after each a eventually there is ab (not necessarily adjacent to the \mathbf{a}).

Solution:

$$
\left.(b \vee c)^{*}\left(a(a \vee b \vee c)^{*}\right) c\right)^{*}(b \vee c)^{*}
$$

d. (4 pts) Give a regular grammar for the set of all strings such that after each a eventually there is ab (not necessarily adjacent to the \mathbf{a}).

Solution:

S::=bSIcSIaCle
$C::=$ aClbClcS

Start symbol S
3. (21 points total) Given the following BNF grammar, for each of the following strings, give a parse tree for it, if it parses starting with \mathbf{E}, or write "None exists" if it does not parse starting with \mathbf{E}. The terminals for this grammar are
$\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p}, \mathbf{n}, \mathbf{c}, \mathbf{q}, \mathbf{l}\}$.
E: :=VIEEplEnlEEBc
B::=EEqIEl
$V:=x|y| z$
a. (5 pts) $\mathbf{x n y n p}$

Solution:

CS 421 Midterm 2
Name:
3. (cont) (21 points total) Given the following BNF grammar, for each of the following strings, give a parse tree for it, if it parses starting with \mathbf{E}, or write "None exists" if it does not parse starting with \mathbf{E}. The terminals for this grammar are $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p}, \mathbf{n}, \mathbf{c}, \mathbf{q}, \mathbf{l}\}$.

E: :=VIEEplEnlEEBc
B::=EEqIEl
$V:=x|y| z$
b. (8 pts) $\mathbf{x y} \mathbf{y} \mathbf{x l c n}$

Solution:

None exists

Name: \qquad
3. (cont) (21 points total) Given the following BNF grammar, for each of the following strings, give a parse tree for it, if it parses starting with \mathbf{E}, or write "None exists" if it does not parse starting with \mathbf{E}. The terminals for this grammar are $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p}, \mathbf{n}, \mathbf{c}, \mathbf{q}, \mathbf{l}\}$.

E: :=VIEEplEnlEEBc
B::=EEqIEl
V::=x|ylz
c. $(8 \mathrm{pts}) \mathbf{z x y x z p} \mathbf{y n c}$

Solution:

CS 421 Midterm 2
Name:
Workspace

CS 421 Midterm 2
Name:
4. (12 points total) Consider the following grammar over the alphabet $\{+, \#,(),, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$:
<exp> ::= <var> | <exp> + | <exp> \# <exp> I (<exp>)
<var> ::=x|ylz
a. (4 pts) Show that the above grammar is ambiguous (using the definition of an ambiguous grammar).

Solution: x \# y + has two parses

CS 421 Midterm 2
Name:
4. (cont) Consider the following grammar over the alphabet $\{+, \#,(),, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$:

```
<exp> ::= <var> | <exp> + | <exp> # <exp> I ( <exp> )
<var> ::=x|y|z
```

b. (8 pts) Write a new grammar accepting the same language accepted by <exp> above, and such that \# (that is <exp> \# <exp>) associates to the right and has higher precedence than + (that is $\langle\boldsymbol{\operatorname { e x p }}>+$).

Solution:

```
<exp> ::= <no_plus> | <exp> + | <exp> + # <no_plus>
<no_plus> ::= <atom> | <atom> # <no_plus>
<atom> ::= x |y|z|(<exp> )
```

Start symbol <exp>

CS 421 Midterm 2
Name:
5. (22 points total) Consider the following grammar:
<expr> ::= <prop> I <prop> ^ <expr> I ᄀ <prop>
<prop> ::= true I x I (<expr>)
a. (3 pts) Write an Ocaml data type token for the tokens that lexer would generate as input to a parser for this grammar.

Solution:

type token $=$ AndTk \mid NotTk \mid TrueTk \mid XTk \mid LeftParenTk \mid RightParenTk
b. (4 pts) Write Ocaml data types expr and prop to represent parse trees for each of the syntactic categories in the given grammar.

Solution:

type expr $=$ Prop2Expr of prop IAnd of prop*expr I Not of prop and prop $=$ True $|\mathrm{X}|$ Parens of expr

CS 421 Midterm 2
Name:
5. (cont) Consider the following grammar:

```
<expr> ::= <prop> | <prop> ^ <expr>| ᄀ <prop>
<prop> ::= true | x | (<expr>)
```

c. (15 pts) Using the types you gave in parts a) and b), write an Ocaml recursive descent parser parse: token list -> expr that, given a list of tokens, returns an expr representing an <expr> parse tree. You should use raise (Failure "no parse")
for cases where no parse exists.

Solution:

let rec expr tokens =
match tokens with (NotTk::tokens_after_not) ->
(match prop tokens_after_not with (p, more_tokens) -> (Not p, more_tokens))
| _ ->
(match prop tokens with (p, more_tokens) ->
(match more_tokens with (AndTk::tokens_after_and) ->
(match expr tokens_after_and with (e, rem_tokens) -> (And(p,e), rem_tokens)) I _ -> (Prop2Expr p, more_tokens)))
and prop tokens = match tokens with (TrueTk :: rem_tokens) -> (True, rem_tokens) I (XTk :: rem_tokens) $->$ (X, rem_tokens)
I (LeftParenTk :: tokens_after_lparen) ->
(match expr tokens_after_lparen with (e, more_tokens) ->
(match more_tokens with RightParenTk::rem_tokens -> (Parens e, rem_tokens)
I _ -> raise (Failure "no parse")))
$I_{\text {_ }}$-> raise (Failure "no parse")
let parse tokens = match expr tokens with (e, []) -> e
I _ -> raise (Failure "no parse")

CS 421 Midterm 2
Name:
6. (12 points) Given the following grammar over nonterminal $\langle\mathbf{b}\rangle$ and $\langle\boldsymbol{e}\rangle$, and terminals $\mathbf{z}, \mathbf{l}, \mathbf{r}, \mathbf{p}$ and eof, with start symbol $\langle\mathbf{b}>$:

$$
\begin{array}{ll}
\mathrm{P} 0: & <\mathrm{s}\rangle::=<\mathrm{e}>\text { eof } \\
\mathrm{P} 1: & <\mathrm{e}>::=<\mathrm{e}><\mathrm{e}><\mathrm{b}>\mathrm{c} \\
\mathrm{P} 2: & <\mathrm{e}>::=\mathrm{x} \\
\mathrm{P} 3: & <\mathrm{b}\rangle::=<\mathrm{e}>1
\end{array}
$$

and Action and Goto tables generated by YACC for the above grammar:

State	Action				Goto		
	x	c	1	[eof]		<e>	<s>
st1	s 3	err	err	err		st4	st2
st2	err	err	err	a			
st3	r 2	r 2	r 2	r 2			
st4	s 3	s 4	err	r 0		st5	
st5	s 3	err	err	err	st7	st6	
st6	s 3	err	s 8	err	st7	st6	
st7	err	s 9	err	err			
st8	r 3	r 3	r 3	r 3			
st9	r 1	r 1	r 1	r 1			

where sti is state $i, \mathbf{s} \boldsymbol{i}$ means shift $\boldsymbol{i}, \mathbf{r} \boldsymbol{i}$ means reduce \boldsymbol{i}, a means accept and [eof] means we have reached the end of input, describe how the string xxxlc[eof] would be parsed with an LR parser using these productions and tables by filling in the table on the next page. I have given you the first 5 cells to get started. Caution: There are strictly more rows than you will need, so do not expect to fill them all.

CS 421 Midterm 2
Name: \qquad

Stack	Current String	Action
Empty	xxxlc[eof]	Initialize stack, go to state 1
st1	xxxlc[eof]	Shift, go to st3
st1::x::st3	xxlc[eof]	Reduce by P2, go to st4
st $1::<\mathrm{e}>::$ st 4	xxlc[eof]	Shift, go to st3
st1::<e>::st4::x::st3	xlc[eof]	Reduce by P2, go to st5
st1::<e>::st4::<e>::st5	lc[eof]	Reduce by P2, go to st6
st1::<e>::st4::<e>::st5::x::st3	Shift, go to st3	
st1::<e>::st4::<e>::st5::<e>::st6	c[eof]	Shift, go to st8
st1::<e>::st4::<e>::st5::<e>::st6::l::st8	Reduce by P3, go to st7	
st1::<e>::st4::<e>::st5::::st7	c[eof]	Shift, go to st9
st1::<e>::st4::<e>::st5::::st7::c::st9	[eof]	Reduce by P1, go to st4
st1::<e>::st4	[eof]	Table says: Reduce by P0, go to st2 This is an error in the table; should be accept

\qquad
7. (9 points) Give a natural semantics (a.k.a. structured operational semantics) derivation of the evaluation of:

$$
((\text { if } x+2>5 \text { then } x:=3 \text { else } x:=x+2),\{x \rightarrow 1\})
$$

You may omit labeling your rule uses.
Solution:
Let EvalXPlus2 =
$(x,\{x \rightarrow 1\}) \Downarrow 1 \quad(2,\{x \rightarrow 1\}) \Downarrow 2 \quad 1+2=3$ $((x+2),\{x \rightarrow 1\}) \Downarrow 3$

Then the derivation is:

$$
\frac{\underbrace{\text { EvalXPlus2 } \quad(5,\{x \rightarrow 1\}) \Downarrow 5 \quad(3>5)=\text { false }}_{((x+2>5),\{x \rightarrow 1\}) \Downarrow \text { false }}}{((\text { if } x+2>5 \text { then } x:=3 \text { else } x:=x+2),\{x \rightarrow 1\}) \Downarrow\{x \rightarrow 3\}} \frac{\text { EvalXPlus2 }}{((x:=x+2),\{x \rightarrow 1\}) \Downarrow\{x \rightarrow 3\}}
$$

CS 421 Midterm 2
Name:
8. (Extra Credit) (10 points total) Give the natural semantics rule(s) for the command for $I=E_{1}$ to E_{2} do C od in a memory m
where E_{I} and E_{2} are evaluated to fixed values before the loop is entered, the loop is entered only if the value of E_{1} is less than or equal to the value of E_{2}, I is incremented at the end of each pass through the loop, after C has been evaluated, and if the loop is entered, it is terminated when, after this incrementing, the value of I is strictly greater than the value of E_{2} computed initially. You may assume that evaluating expressions does not alter the memory.

Solution:

$$
\begin{aligned}
& \left(E_{\underline{l}}, m\right) \Downarrow V_{\underline{l}}\left(E_{\underline{2}}, m\right) \Downarrow V_{\underline{2}} \quad\left(\left(\text { while } I<=V_{\underline{2}} \text { do } C \text { od }\right), m\left[I \leftarrow V_{\underline{l}}\right]\right) \Downarrow m \text {, } \\
& \left(\left(\text { for } I=E_{1} \text { to } E_{2} \text { do } C \text { od }\right), m\right) \Downarrow m \text { ' }
\end{aligned}
$$

CS 421 Midterm 2
Name:
Workspace

CS 421 Midterm 2
Name:
Simple Imperative Programming Language
$I \in$ Identifiers $\quad N \in$ Numerals
$B::=$ true \mid false $|B \& B| B$ or $B|\operatorname{not} B| E<E \mid E=E$
$E::=N|I| E+E|E * E| E-E \mid-E$
$C::=$ skip $|C ; C| I::=E$ | if B then C else C fi \mid while B do C od
Natural Semantics Rules
Identifiers: $\overline{(I, m) \Downarrow m(I)} \quad$ Numerals are values: $\overline{(N, m) \Downarrow N}$
Booleans: $(\overline{\text { true }, m) \Downarrow \text { true }} \quad$ (false,$m) \Downarrow$ false
$(B, m) \Downarrow$ false
$\left(B \& B^{\prime}, m\right) \Downarrow$ false
$(B, m) \Downarrow$ true $\quad\left(B^{\prime}, m\right) \Downarrow b$
$\left(B \& B^{\prime}, m\right) \Downarrow b$
$\xrightarrow[(B, m) \Downarrow \text { true }]{ }$
$\left(B\right.$ or $\left.B^{\prime}, m\right) \Downarrow$ true

$$
\frac{(B, m) \Downarrow \text { false }\left(B^{\prime}, m\right) \Downarrow b}{\left(B \text { or } B^{\prime}, m\right) \Downarrow b}
$$

$(B, m) \Downarrow$ true (not $B, m) \Downarrow$ false
(B, m) \downarrow false $(\operatorname{not} B, m) \Downarrow$ true
$(E, m) \Downarrow U \quad\left(E^{\prime}, m\right) \Downarrow V \quad U \sim V=b$
$\left(E \sim E^{\prime}, m\right) \Downarrow b \quad$ (\sim a relation)

Arithmetic Expressions: $\quad(E, m) \Downarrow U \quad\left(E^{\prime}, m\right) \Downarrow V \quad U$ op $V=N$ (op an arith binary operation) $\left(E\right.$ op $\left.E^{\prime}, m\right) \Downarrow N$

Commands:

Skip: $\quad \overline{\text { skip, } m) \Downarrow m} \quad$ Assignment: $\frac{(E, m) \Downarrow V}{(I::=E, m) \Downarrow m[I \leftarrow V]}$
Sequencing: $\quad(C, m) \Downarrow m^{\prime} \quad\left(C^{\prime}, m^{\prime}\right) \Downarrow m^{\prime}$

$$
\left(C ; C^{\prime}, m\right) \Downarrow m^{\prime}
$$

If Then Else Command:

$\frac{(B, m) \Downarrow \text { true }(C, m) \Downarrow m^{\prime}}{\left.\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi }, m\right) \Downarrow m^{\prime}}$,
$\frac{(B, m) \Downarrow \text { false } \quad\left(C^{\prime}, m\right) \Downarrow m^{\prime}}{\left.\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi, } m\right) \Downarrow m^{\prime}}$

While Command:

$(B, m) \Downarrow$ false
(while B do C od, m) $\Downarrow m$
$(B, m) \Downarrow$ true $(C, m) \Downarrow m^{\prime}\left(\right.$ while B do C od, $\left.m^{\prime}\right) \Downarrow m$ ', (while B do C od, m) $\Downarrow m^{\prime}$,

CS 421 Midterm 2
Name: \qquad
Transition Semantics:
Identifiers: $(I, m) \rightarrow(m(I), m)$

Numerals are values.

Booleans:

$\overline{(\text { false } \& B, m) \rightarrow(\text { false }, m)} \quad \overline{(\text { true } \& B, m) \rightarrow(B, m)} \quad \frac{(B, m) \rightarrow\left(B^{\prime}, m\right)}{\left(B \& B^{\prime}, m\right) \rightarrow\left(B^{\prime \prime} \& B^{\prime}, m\right)}$
$\overline{(\text { true or } B, m) \rightarrow(\text { true }, m)} \quad \overline{(\text { false or } B, m) \rightarrow(B, m)} \quad \frac{(B, m) \rightarrow\left(B^{\prime}, m\right)}{\left(B \text { or } B^{\prime}, m\right) \rightarrow\left(B^{\prime \prime} \text { or } B^{\prime}, m\right)}$
$\overline{(\text { not true }, \mathrm{m}) \rightarrow(\text { false }, m)} \quad \overline{(\text { not false }, \mathrm{m}) \rightarrow \text { true }, m)} \quad \overline{(\operatorname{not} B, m) \rightarrow\left(\operatorname{not} B^{\prime}, m\right)}$
$\frac{(E, m) \rightarrow\left(E^{\prime \prime}, m\right)}{\left(E \sim E^{\prime}, m\right) \rightarrow\left(E^{\prime} \sim E^{\prime}, m\right)} \quad \frac{(E, m) \rightarrow\left(E^{\prime}, m\right)}{(V \sim E, m) \rightarrow\left(V \sim E^{\prime}, m\right)} \sim$ a relation
$(U \sim V, m) \rightarrow$ (true, m) or (false, m), depending on whether $U \sim V$ holds or not
Arithmetic Expressions:
$\frac{(E, m) \rightarrow\left(E^{\prime,}, m\right)}{\left(E \text { op } E^{\prime}, m\right) \rightarrow\left(E^{\prime,} \text { op } E^{\prime}, m\right)} \quad \frac{(E, m) \rightarrow\left(E^{\prime}, m\right)}{(V o p E, m) \rightarrow\left(V o p E^{\prime}, m\right)}$
$(U$ op $V, m) \rightarrow(N, m)$ where $N=U$ op V
Commands:

$$
\begin{gathered}
\overline{\text { skip, } m) \rightarrow m} \quad \begin{array}{c}
\frac{(E, m) \rightarrow\left(E^{\prime}, m\right)}{(I::=E, m)-->\left(I::=E^{\prime}, m\right)} \quad \overline{(I::=V, m) \rightarrow m[I \leftarrow V]} \\
\frac{(C, m) \rightarrow\left(C^{\prime,}, m^{\prime}\right)}{\left(C ; C^{\prime}, m\right) \rightarrow\left(C^{\prime}, ; C^{\prime}, m^{\prime}\right)} \quad \frac{(C, m) \rightarrow m^{\prime}}{\left(C ; C^{\prime}, m\right) \rightarrow\left(C^{\prime}, m^{\prime}\right)}
\end{array}
\end{gathered}
$$

If Then Else Command:

(while B do C od, m) \rightarrow (if B then C; while B do C od else skip fi, m)

