
 1

CS421 Fall 2011 Midterm 2
Thursday, November 10, 2011

• You have 75 minutes to complete this exam.
• This is a closed-book exam. You are allowed one 3inch by 5 inch card of notes

prepared by yourself. This card is not to be shared. All other materials, besides
pens, pencils and erasers, are to be away.

• Do not share anything with other students. Do not talk to other students. Do not
look at another student’s exam. Do not expose your exam to easy viewing by
other students. Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. You must use a whisper, or write
your question out. Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 20 pages to the exam.
Please verify that you have all 20 pages.

• Please write your name and NetID in the spaces above, and also at the top of
every page.

Name:

NetID:

 2

Problem Possible Points Points Earned

1 8

2 16

3 21

4 12

5 22

6 12

7 9

PreTotal 100

Extra Credit 10

PostTotal 110

 3

CS 421 Midterm 2 Name:____________________________________

1. (8 points) Recall that we use the following OCaml types to represent the types of

PicoML, the language we have been implementing since MP4:
type typeVar = int type constTy = {name : string; arity : int}
type monoTy = TyVar of typeVar | TyConst of (constTy * monoTy list)

In MP6, you were asked to implement unification of systems of type constraints,
where a system of type constraints is represented as a list of pairs of types. Each pair
in the constraints represents an equation to be solved, and unification, if it succeeds
returns a simultaneous substitution such that applying this substitution to every pair in
the constraint system results in the first component becoming identical to the second.
In addition to the base case, and the error case, there are four main steps to
unification, as described in class. Give an implementation in OCaml of the
Decompose step of

unify : (monoTy * monoTy) list -> (typeVar * monoTy) list option
described by:

If C is a nonempty constraint set such that (s,t) ∈ C and C’= C \ {(s,t)}, then
(Decompose) if s = TyConst(name, [s1,…, sn]) and t = TyConst(name’, [t1,…, tm])
then if name = name’ and n = m, then unify C = unify ({(s1, t1), …, (s1, t1)} ∪ C’,
while if name ≠ name’ or n ≠ m, then no unifying substitution exists.

You may use List.fold_left, List.fold_right, List.map and @. Any other auxiliary
functions should be defined.

Solution:

let rec addNewEqs lst1 lst2 acc =
 match lst1,lst2 with
 [],[] -> Some acc
 | t::tl, t'::tl' -> addNewEqs tl tl' ((t,t')::acc)
 | _ -> None

let rec unify c =
 match c with (s,t) :: c’ ->
 (match (s,t) with (TyConst(str, tl), TyConst(str', tl'))::eqs when str=str' ->
 (match (addNewEqs tl tl' eqs) with
 None -> None
 | Some l -> unify l)
 | …)

 | …)

 4

 CS 421 Midterm 2 Name:____________________________________

2. (16 pts total) In parts a) and c) you are to give a regular expression generating each of

the following languages over the alphabet Σ = {a, b, c}. You should use the notation
fro basic regular expressions given in class: Regular expressions over an alphabet Σ
are strings over Σ together with the five extra characters (,), *, ∨ , and ε . No other
symbols should occur in your regular expression, and they will not be accepted.
In parts b) and d) you are asked to give a regular grammar for the languages in a) and
c).

a. (4 pts) Give a regular expression for the set of all strings, where a occurs exactly in

positions that are multiples of 3. We will number positions starting from the left
with 1.

Solution:

((b ∨ c) (b ∨ c) a)* (b ∨ c ∨ ε) (b ∨ c ∨ ε)

b. (4 pts) Give a right regular grammar for the set of all strings, where a occurs
exactly in positions that are multiples of 3. We will number positions starting from
the left with 1.

Solution:

S ::= b T | c T | ε
T ::= b R | c R | ε
R ::= a S

Start symbol S

 5

CS 421 Midterm 2 Name:____________________________________

2. (cont) In parts a) and c) you are to give a regular expression generating each of the

following languages over the alphabet Σ = {a, b, c}. You should use the notation fro
basic regular expressions given in class: Regular expressions over an alphabet Σ are
strings over Σ together with the five extra characters (,), *, ∨ , and ε . No other
symbols should occur in your regular expression, and they will not be accepted.
In parts b) and d) you are asked to give a regular grammar for the languages in a) and
c).

c. (4 pts) Give a regular expression for the set of all strings such that after each a

eventually there is a b (not necessarily adjacent to the a).

Solution:

(b ∨ c)* (a (a ∨ b ∨ c)*)c)* (b ∨ c)*

d. (4 pts) Give a regular grammar for the set of all strings such that after each a
eventually there is a b (not necessarily adjacent to the a).

Solution:

S::= b S | c S | a C | ε
C::= a C | b C | c S

Start symbol S

 6

CS 421 Midterm 2 Name:____________________________________

3. (21 points total) Given the following BNF grammar, for each of the following strings,

give a parse tree for it, if it parses starting with E, or write “None exists” if it does
not parse starting with E. The terminals for this grammar are
 {x, y, z, p, n, c, q, l}.

E ::= V | E E p | E n | E E B c
B ::= E E q | E l
V::= x | y | z

a. (5 pts) x n y n p

Solution:

 E
 / | \
 E E p
 / | | \
 E n E n
 | |
 V V
 | |
 x y

 7

CS 421 Midterm 2 Name:____________________________________

3. (cont) (21 points total) Given the following BNF grammar, for each of the
following strings, give a parse tree for it, if it parses starting with E, or write “None
exists” if it does not parse starting with E. The terminals for this grammar are
 {x, y, z, p, n, c, q, l}.

E ::= V | E E p | E n | E E B c
B ::= E E q | E l
V::= x | y | z

b. (8 pts) x y p x l c n

Solution:

 None exists

 8

CS 421 Midterm 2 Name:____________________________________

3. (cont) (21 points total) Given the following BNF grammar, for each of the
following strings, give a parse tree for it, if it parses starting with E, or write “None
exists” if it does not parse starting with E. The terminals for this grammar are
 {x, y, z, p, n, c, q, l}.

E ::= V | E E p | E n | E E B c
B ::= E E q | E l
V ::= x | y | z

c. (8 pts) z x y x z p p n l c

Solution:

 E
 / / \ \
 E E B c
 | | | \
 V V E l
 | | | \
 z x E n
 / | \
 E E p
 / / | \
 V E E p
 | | |
 y V V
 | |
 x z

 9

CS 421 Midterm 2 Name:____________________________________
Workspace

 10

CS 421 Midterm 2 Name:____________________________________
4. (12 points total) Consider the following grammar over the alphabet {+, #, (,), x, y, z}:

<exp> ::= <var> | <exp> + | <exp> # <exp> | (<exp>)
<var> ::= x | y | z

a. (4 pts) Show that the above grammar is ambiguous (using the definition of an
ambiguous grammar).

Solution: x # y + has two parses

 <exp> <exp>
 / | \ / \
 <exp> # <exp> <exp> +
 | / \ / | \
 x <exp> + <exp> # <exp>
 | | |
 y x y

 11

CS 421 Midterm 2 Name:____________________________________
4. (cont) Consider the following grammar over the alphabet {+, #, (,), x, y, z}:

<exp> ::= <var> | <exp> + | <exp> # <exp> | (<exp>)
<var> ::= x | y | z

b. (8 pts) Write a new grammar accepting the same language accepted by <exp>

above, and such that # (that is <exp> # <exp>) associates to the right and has
higher precedence than + (that is <exp> +).

Solution:

<exp> ::= <no_plus> | <exp> + | <exp> + # <no_plus>
<no_plus> ::= <atom> | <atom> # <no_plus>
<atom> ::= x | y | z | (<exp>)

Start symbol <exp>

 12

CS 421 Midterm 2 Name:____________________________________
5. (22 points total) Consider the following grammar:

<expr> ::= <prop> | <prop> ∧ <expr> | ¬ <prop>
<prop> ::= true | x | (<expr>)

a. (3 pts) Write an Ocaml data type token for the tokens that lexer would generate as
input to a parser for this grammar.

Solution:

type token = AndTk | NotTk | TrueTk | XTk | LeftParenTk | RightParenTk

b. (4 pts) Write Ocaml data types expr and prop to represent parse trees for each of
the syntactic categories in the given grammar.

Solution:

type expr = Prop2Expr of prop |And of prop*expr | Not of prop
and prop = True | X | Parens of expr

 13

CS 421 Midterm 2 Name:____________________________________
5. (cont) Consider the following grammar:

<expr> ::= <prop> | <prop> ∧ <expr> | ¬ <prop>
<prop> ::= true | x | (<expr>)

c. (15 pts) Using the types you gave in parts a) and b), write an Ocaml recursive

descent parser parse: token list -> expr that, given a list of tokens, returns an expr
representing an <expr> parse tree. You should use

raise (Failure “no parse”)
 for cases where no parse exists.

Solution:

let rec expr tokens =
 match tokens with (NotTk::tokens_after_not) ->
 (match prop tokens_after_not with (p, more_tokens) -> (Not p, more_tokens))
 | _ ->
 (match prop tokens with (p, more_tokens) ->
 (match more_tokens with (AndTk::tokens_after_and) ->
 (match expr tokens_after_and with (e, rem_tokens) -> (And(p,e), rem_tokens))
 | _ -> (Prop2Expr p, more_tokens)))

and prop tokens =
 match tokens with (TrueTk :: rem_tokens) -> (True, rem_tokens)
 | (XTk :: rem_tokens) -> (X, rem_tokens)
 | (LeftParenTk :: tokens_after_lparen) ->
 (match expr tokens_after_lparen with (e, more_tokens) ->
 (match more_tokens with RightParenTk::rem_tokens -> (Parens e, rem_tokens)
 | _ -> raise (Failure “no parse”)))
 | _ -> raise (Failure “no parse”)

let parse tokens =
 match expr tokens with (e, []) -> e
 | _ -> raise (Failure “no parse”)

 14

CS 421 Midterm 2 Name:____________________________________
6. (12 points) Given the following grammar over nonterminal and <e>, and

terminals z, l, r, p and eof, with start symbol :
P0: <s> ::= <e> eof
P1: <e> ::= <e> <e> c
P2: <e>::= x
P3: ::= <e> l

 and Action and Goto tables generated by YACC for the above grammar:
Action Goto

State x c l [eof] <e> <s>
st1 s 3 err err err st4 st2
st2 err err err a
st3 r 2 r 2 r 2 r 2
st4 s 3 s 4 err r 0 st5
st5 s 3 err err err st7 st6
st6 s 3 err s 8 err st7 st6
st7 err s 9 err err
st8 r 3 r 3 r 3 r 3

st9 r 1 r 1 r 1 r 1

where sti is state i, s i means shift i, r i means reduce i, a means accept and [eof]
means we have reached the end of input, describe how the string xxxlc[eof] would
be parsed with an LR parser using these productions and tables by filling in the
table on the next page. I have given you the first 5 cells to get started. Caution:
There are strictly more rows than you will need, so do not expect to fill them all.

 15

CS 421 Midterm 2 Name:____________________________________

Stack Current
String

Action

Empty xxxlc[eof] Initialize stack, go to state 1

st1 xxxlc[eof] Shift, go to st3

st1::x::st3 xxlc[eof] Reduce by P2, go to st4

st1::<e>::st4 xxlc[eof] Shift, go to st3

st1::<e>::st4::x::st3 xlc[eof] Reduce by P2, go to st5

st1::<e>::st4::<e>::st5 xlc[eof] Shift, go to st3

st1::<e>::st4::<e>::st5::x::st3 lc[eof] Reduce by P2, go to st6

st1::<e>::st4::<e>::st5::<e>::st6 lc[eof] Shift, go to st8

st1::<e>::st4::<e>::st5::<e>::st6::l::st8 c[eof] Reduce by P3, go to st7

st1::<e>::st4::<e>::st5::::st7 c[eof] Shift, go to st9

st1::<e>::st4::<e>::st5::::st7::c::st9 [eof] Reduce by P1, go to st4

st1::<e>::st4 [eof] Table says: Reduce by P0, go to st2
This is an error in the table; should be
accept

 16

CS 421 Midterm 2 Name:____________________________________

7. (9 points) Give a natural semantics (a.k.a. structured operational semantics) derivation of
the evaluation of:

 ((if x + 2 > 5 then x:= 3 else x := x + 2), {x → 1})
You may omit labeling your rule uses.

Solution:

Let EvalXPlus2 =

(x, {x → 1})⇓ 1 (2, {x → 1})⇓ 2 1+2 = 3
 ((x + 2), {x → 1})⇓ 3

Then the derivation is:

 .
 EvalXPlus2 (5, {x → 1})⇓ 5 (3 > 5) = false EvalXPlus2 .
((x + 2 > 5), {x → 1})⇓ false ((x := x + 2), {x → 1})⇓ {x → 3}

((if x + 2 > 5 then x:= 3 else x := x + 2), {x → 1})⇓ {x → 3}

 17

CS 421 Midterm 2 Name:____________________________________
8. (Extra Credit) (10 points total) Give the natural semantics rule(s) for the command

for I = E1 to E2 do C od in a memory m
where E1 and E2 are evaluated to fixed values before the loop is entered, the loop
is entered only if the value of E1 is less than or equal to the value of E2 , I is
incremented at the end of each pass through the loop, after C has been evaluated,
and if the loop is entered, it is terminated when, after this incrementing, the value
of I is strictly greater than the value of E2 computed initially. You may assume
that evaluating expressions does not alter the memory.

Solution:

(E1 , m) ⇓ V1 (E2 , m) ⇓ V2 ((while I <= V2 do C od), m [I  V1]) ⇓ m’
((for I = E1 to E2 do C od), m) ⇓ m’

 18

CS 421 Midterm 2 Name:____________________________________

Workspace

 19

CS 421 Midterm 2 Name:___________________________________
Simple Imperative Programming Language

I ∈ Identifiers N ∈ Numerals

B ::= true | false | B & B | B or B | not B | E < E | E = E

E::= N | I | E + E | E * E | E - E | - E

C::= skip | C;C | I ::= E | if B then C else C fi | while B do C od

Natural Semantics Rules

Identifiers: (I,m) ⇓ m(I) Numerals are values: (N,m) ⇓ N

Booleans: (true,m) ⇓ true (false ,m) ⇓ false

 (B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b
(B & B’, m) ⇓ false (B & B’, m) ⇓ b

 (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b
(B or B’, m) ⇓ true (B or B’, m) ⇓ b

(B, m) ⇓ true (B, m) ⇓ false (E, m) ⇓ U (E’, m) ⇓ V U ~ V = b
 (not B, m) ⇓ false (not B, m) ⇓ true (E ~ E’, m) ⇓ b (~ a relation)

Arithmetic Expressions: (E, m) ⇓ U (E’, m) ⇓ V U op V = N
 (op an arith binary operation) (E op E’, m) ⇓ N

 Commands:

Skip: (skip, m) ⇓ m Assignment: (E,m) ⇓ V ,
 (I::=E,m) ⇓ m[I  V]

Sequencing: (C,m) ⇓ m’ (C’,m’) ⇓ m’’
 (C;C’, m) ⇓ m’’

If Then Else Command:

 (B,m) ⇓ true (C,m) ⇓ m’ (B,m) ⇓ false (C’,m) ⇓ m’ ,
 (if B then C else C’ fi, m) ⇓ m’ (if B then C else C’ fi, m) ⇓ m’

While Command:

 (B,m) ⇓ false (B,m)⇓true (C,m)⇓m’ (while B do C od, m’)⇓m’’
(while B do C od, m) ⇓ m (while B do C od, m) ⇓ m’’

 20

CS 421 Midterm 2 Name:___________________________________

Transition Semantics:
Identifiers: (I,m)  (m(I), m) Numerals are values.

Booleans:
, , (B, m)  (B’’, m) ,
(false & B, m)  (false, m) (true & B, m)  (B,m) (B & B’, m)  (B’’ & B’, m)

, , (B, m)  (B’’, m) ,
(true or B, m)  (true, m) (false or B, m)  (B,m) (B or B’, m)  (B’’ or B’,m)

, , (B, m)  (B’, m) ,
(not true, m)  (false, m) (not false, m)  true, m) (not B, m)  (not B’, m)

 (E, m)  (E’’,m) (E, m)  (E’,m) , ~ a relation
(E ~ E’, m)  (E’’~E’,m) (V ~ E, m)  (V~E’,m)

, ,
(U ~ V, m)  (true, m) or (false, m), depending on whether U ~ V holds or not

 Arithmetic Expressions:
 (E, m)  (E’’,m) (E, m)  (E’,m) ,
(E op E’, m)  (E’’ op E’,m) (V op E, m)  (V op E’,m)

, ,
(U op V, m) (N,m) where N = U op V
Commands:
, ,
(skip, m)  m (E,m)  (E’,m) (I::=V,m)  m[I  V]
 (I::=E,m) --> (I::=E’,m)

 (C,m)  (C’’,m’) (C,m)  m’ ,
 (C;C’, m)  (C’’;C’,m’) (C;C’, m)  (C’,m’)

If Then Else Command:
, ,
(if true then C else C’ fi, m)  (C, m) (if false then C else C’ fi, m)  (C’, m)
 (B,m)  (B’,m) ,
(if B then C else C’ fi, m)  (if B’ then C else C’ fi, m)

While Command:

, ,
(while B do C od, m)  (if B then C; while B do C od else skip fi, m)

