
 1

CS421 Fall 2011 Midterm 1
Tuesday, October 12, 2011

• You have 75 minutes to complete this exam.
• This is a closed-book exam. You are allowed one 3inch by 5inch card of notes prepared by

yourself. This card is not to be shared. All other materials, besides pens, pencils and
erasers, are to be away.

• Do not share anything with other students. Do not talk to other students. Do not look at
another student’s exam. Do not expose your exam to easy viewing by other students.
Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you may seek clarification from
myself or one of the TAs. You must use a whisper, or write your question out. Speaking out
aloud is not allowed.

• Including this cover sheet and rules at the end, there are 9 sheets, 17 pages to the exam,
including one blank page for workspace. The exam is printed double sided. Please verify that
you have all 17 pages.

• Please write your name and NetID in the spaces above, and also at the top of every sheet.

Name:

NetID:

 2

Problems Possible Points Points Earned

1

2

3

4

5

6

7

8

9

PreTotal

Extra Credit

PostTotal

6

8

11

11

11

10

 11

12

20

 100

10

110

 3

CS 421 Midterm 1 Name:____________________________________

1. (6 pts total) Suppose that the following code is input one line at a time into OCaml:
let z = 32.0;;
let r = 1.8;;
let trans x z = (x *. r) +. z;;
let z = 4.0;;
let r = 5.0;;
let a = trans 2.0 1.0;;
let b = trans 1.0;;
let c = trans (1.0, 1.0);;

For each of a, b, and c, either give what result is returned, or give the reason why nothing is
returned.

a. (2 pt) Tell what is returned, if anything, for a, or why not:

Solution: 4.6

b. (2 pt) Tell what is returned, if anything, for b, or why not:

Solution: a function from floats to floats, adding 1.8 to its input

c. (2 pt) Tell what is returned, if anything, for c, or why not:

 Solution: Attempting to evaluate c causes a type error, because trans take as a argument an
int, but it is being applied to an (int * int)

 4

2. (8 pts total) For each of the following programs, indicate what is printed, and value is returned in

each case:
a. (4pts) let x = (print_string “a”; 5)
 in (fun y -> (print_string “b”; (y *x) + y)) (print_string “c”; 3);;

Solution: prints: acb returns: 18

b. (4 pts) (fun z -> (print_string “a”; ((z() * 5) + z()))) (fun () -> (print_string “b”; 3));;

Solution: prints: abb returns: 18

 5

CS 421 Midterm 1 Name:____________________________________

3. (11 pts total) Consider the following OCaml code

let x = 5;;
let a = x + 4;;
let f y z = let h x = x + a in y + h z;;
let a = 20;;
let x = f a 3;;

Describe the final environment that results from the execution of the above code if execution is begun
in an empty environment. Your answer should be written as a set of bindings of variables to values,
with only those bindings visible at the end of the execution present. Your answer should be a precise
mathematical answer, with a precise description of values involved in the environment. The update
operator (+) and abbreviations should not be used.

Solution:
{f -> <y, fun z -> let h x = x + a in y + h z, {x -> 5; a -> 9}>, a -> 20, x -> 32}

 6

4. (11 pts) Write a function partial_sums : float list -> float list that takes a list of floats [x0;…; xn]

and returns a list whose ith element is the sum of the elements in positions i to n,

€

x j
j= i

n

∑ , for each

i = 0, … n. A sample execution is as follows:
let rec partial_sums lst = …
val partial_sums : float list -> float list = <fun>
partial_sums [4.0; 2.2; 7.5];;
- : float list = [13.7; 9.7; 7.5]

You are allowed to start your code with let rec, but are not required to. You are allowed to use
any auxiliary functions you write yourself here, but you are not allowed to use any library
functions. You may use the append function @.

 Solution:

 let rec partial_sums lst =
 match lst with [] -> []
 | x::xs ->
 (match partial_sums xs with [] -> [x]
 | y::ys -> (x +. y) :: (y :: ys))

 7

CS 421 Midterm 1 Name:____________________________________

5. (11 pts total)

a. (5 pts) Write a function count_if : (‘a -> bool) -> ‘a list -> int such that count_if p lst returns
the number of elements in lst for which the given predicate p gives true. The function is
required to use only tail recursion (no other form of recursion). You may use auxiliary
functions, but they must also use no other form of recursion than tail recursion, You may not
use any library functions. Executing your code should give the following behavior:

let rec count_if p lst = ... ;;
val count_if : (‘a -> bool) -> ‘a list -> int = <fun>
count_if (fun x -> x > 3) [1;2;3;4;5];;
- : int = 2

Solution:
let rec count_if p lst =
 let rec count_if_aux p lst count =
 (match lst with [] -> count
 | (x::xs) -> count_if_aux p xs (if p x then 1+ count else count))
 in count_if_aux p lst 0

b. (6 pts) Rewrite count_if as described above, using

List.fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
but no other library functions and no explicit recursion.

Solution:
let count_if p lst =
List.fold_left (fun count -> fun x -> if p x then 1 + count else count) 0 lst

 8

6. (10 pts) Consider the following code:

let rec map f l =
 match l with [] -> [] | (x :: xs) -> (f x) :: map f xs ;;

a. (2 pts) Write consk, the Continuation Passing Style version of ::. Your function should
have the following type:

consk : ‘a -> ‘a list -> (‘a list -> ‘b) -> ‘b

Solution: let consk x xs k = k(x :: xs)

b. (8 pts) Write a function mapk that is a complete Continuation Passing Style transformation
of map. Your function should have the following type:
mapk : (‘a -> (‘b -> ‘c) -> ‘c) -> ‘a list -> (‘b list -> ‘c) -> ‘c

Solution:

let rec mapk fk l k =
 match l with [] -> k []
 | x:: xs -> fk x (fun r1 -> mapk fk xs (fun r2 -> consk r1 r2 k))

Also acceptable:

let rec mapk fk l k =
 match l with [] -> k []
 | x :: xs -> mapk fk xs (fun r1 -> fk x (fun r2 -> consk r2 r1 k))

 9

CS 421 Midterm 1 Name:____________________________________

7. (11 pts). Create an OCaml recursive data type to describe propositional formulae made from true,

false, propositional variables (named by strings), negation (not A), conjunctions (A and B), and
disjunctions (A or B). Your data type should be able to model every propositional formulae
described above, and nothing else.

Solution:
type prop = True | False | PropVar of string | Not of prop | And of prop * prop | Or of prop * prop

 10

8. (12 pts total) Consider the following Ocaml recursive data types:

type const = Int of int | Bool of bool
type exp = VarExp of string

| ConExp of const
| IfExp of exp * exp * exp
| AppExp of exp * exp
| FunExp of string * exp

Write a function num_of_consts : exp -> int that counts the number of occurrences for the
constructor ConExp in an exp. You may use recursion, auxiliary functions, and library functions
from OCaml freely. A sample execution is as follows:

let rec num_of_consts exp = …
val num_of_consts : exp -> int = <fun>
num_of_consts(IfExp (ConExp (Bool true), FunExp (“x”, ConExp (Int 5)), VarExp “y”));;
- : int = 2

Solution:
let rec num_of_consts exp =
 match exp
 with VarExp _ -> 0
 | ConExp c -> 1
 | IfExp (e1,e2,e3) -> (num_of_consts e1) + (num_of_consts e2) + (num_of_consts e3)
 | AppExp (e1,e2) -> (num_of_consts e1) + (num_of_consts e2)
 | FunExp (x, e) -> (num_of_consts e)

 11

CS 421 Midterm 1 Name:____________________________________

Worksheet (If extra space is needed).

 12

9. (20 pts total) Give a type derivation for the following type judgment:

{}|- let x = 5 >3 in ((if x then (fun x -> x + 2) else (fun y -> y)) 7) : int

You may use the attached sheet of typing rules. Label every use of a rule with the rule used. You
may abbreviate, but you must define your abbreviations. You may find it useful to break your
derivation into pieces. If you do, give names to your pieces, which you may then use in
describing the whole. Your environments should be mathematical mappings here, and NOT
implementations as you might find in a program.

Solution:

 Var ------------------ Con--------------------
 {x:int} |- x:int {x:int} |- 2:int
 ArithOp -- Var ---------------------------
 {x:int} |- x + 2 : int {y:int, x:bool} |- y:int
 Fun ------------------------ Fun ---------------------------
 Var ------------ {x:bool}|- {x:bool}|-
 {x:bool}|- fun x -> x + 2 : fun y -> y :
 x:bool int -> int int -> int
 If---
Con --------- Con------- {x:bool}|-(if x then (fun x -> x + 2) Con---------------------
 {}|-5:int {}|-3:int else (fun y -> y)):int -> int {x:bool}|- 7 :int
Rel ------------------------ App--

 {}|- 5>3:bool {x:bool}|- ((if x then (fun x -> x + 2) else (fun y -> y)) 7) : int
LetRule--

 {}|- let x = 5 >3 in ((if x then (fun x -> x + 2) else (fun y -> y)) 7) : int

 13

CS 421 Midterm 1 Name:____________________________________

Worksheet (If extra space is needed).

 14

10. Extra Credit: (10 pts) Write the clause for the function

gather_ty_substitution : judgment -> (proof * substitution) option
for AppExp (corresponding to application of two expressions), that implements the following
rule:

Γ |− e1 : τ1 −> τ | σ1 σ1 (Γ) |− e2 : σ1 (τ1) | σ2

Γ |− e1 e2 : τ | σ2 o σ1

The following types are used:
type ‘a option = Some of ‘a | None
type constTy = {name : string; arity : int}
type typeVar = int
type monoTy = TyVar of typeVar | TyConst of (constTy * monoTy list)
type env = …
type exp = … | AppExp of exp * exp | …
type judgement = {gamma : env; exp : exp; monoTy : monoTy}
type proof = {antecedents : proof list; conclusion : judgment}
type substitution = (typeVar * monoTy) list

In addition, we have the following functions using these types:
val fresh : unit -> monoTy
for creating type variables with names not previously used
val mk_fun_ty : monoTy -> monoTy -> monoTy
for creating the function space type between two types
val subst_compose : substitution -> substitution-> substitution
for creating the composition of two substitions, and
val monoTy_lift_subst : substitution -> monoTy -> monoTy
val env_lift_subst : substitution -> env -> env
for applying a substitution to each of a monoTy and an env

You may assume your code begins

let rec gather_ty_substitution judgment =
 let {gamma = gamma, exp = exp, monoTy = tau) = judgment
 match exp with …

Solution:
| AppExp (e1,e2) ->
 let tau1 = fresh() in
 match gather_ty_substitution {gamma = gamma, exp = e1, monoTy = mk_fun_ty tau1 tau}
 with None -> None
 | Some (e1proof, sigma1) ->
 (match gather_ty_substitution {gamma = env_lift_subst sigma1 gamma, exp = e2,
 monoTy = monoTy_lift_subst sigma1 tau1}
 with None -> None
 | Some (e2proof, sigma2) -> Some({anecedents = [e1proof; e2proof]; conclusion = judgment},
 subst_compose sigma2 sigma1))

 15

CS 421 Midterm 1 Name:____________________________________

Worksheet (If extra space is needed).

 16

 17

CS 421 Midterm 1 Name:______________________________

Rules for type derivations:

Constants:

Γ|- n : int (assuming n is an integer constant)
___________ ____________
Γ|- true : bool Γ|- false : bool

Variables:

Γ |- x : σ if Γ(x) = σ

Primitive operators (⊕ ∈ { +, -, *, mod, …}):
 Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ⊕ e2 : int

Relations (˜ ∈ { < , > , =, <=, >= }):
Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ˜ e2 :bool

Connectives :
 Γ |- e1 : bool Γ |- e2 : bool Γ |- e1 : bool Γ |- e2 : bool

 Γ |- e1 && e2 : bool Γ |- e1 || e2 : bool

If_then_else rule:
 Γ |- e1 : bool Γ |- e2 : τ Γ |- e3 : τ

 Γ |- (if e1 then e2 else e3) : τ

Application rule: Function rule:
 Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1 [x : τ1] + Γ |- e : τ2

 Γ |- (e1 e2) : τ2 Γ |- fun x -> e : τ1 → τ2

Let rule: Let Rec rule:
 Γ |- e1 : τ1 [x : τ1] + Γ |- e2 : τ2 [x: τ1] + Γ |- e1:τ1 [x: τ1] + Γ |- e2:τ2

 Γ |- (let x = e1 in e2) : τ2 Γ |- (let rec x = e1 in e2) : τ2

