
Skinning

CS418 Computer Graphics

John C. Hart

Simple Inverse Kinematics

• Given target point (x,y) in position space,

what are the parameters (q,f) in configuration

space that place the hand on the target point?

• Use Law of Cosines to find q

d2 = a2 + b2 – 2ab cos q

cos q = (a2 + b2 – d2)/2ab

cos q = (a2 + b2 – x2 – y2)/2ab

• And to find a

cos a = (a2 + d2 – b2)/2ad

cos a = (a2 + x2 + y2 – b2)/2ad

• Use arctangent to find b then f

b = atan2(y,x)

f = a – b

(0,0)
f

a
b

(x,y)

q
(0,0)

a
b

(x,y)
d

q

(0,0)
f

a

(x,y)
d

b

a

Skinning

• Elbow joints don’t look realistic because

geometry detaches

• Transformation hierarchy:

– R(q1) rotates upper-arm cylinder about its

shoulder at the origin

– M1 moves upper-arm cylinder from the

origin to its position in world coordinates

– R(q2) rotates forearm cylinder about its

elbow at the origin

– M2 moves forearm elbow from the origin

to the end of the upper-arm cylinder when

its shoulder is based at the origin

• When q2  0 the elbow end of the upper-arm

does not align with the elbow end of the

forearm

M1R(q1)

M1R(q1) M2

R(q2)
M2R(q 2)

Skinning

• Solution is to interpolate matrices from the

undetached coordinate frame into the correctly

oriented coordinate frame per-vertex

• Let

Mstraight = M1R(q1) M2R(0)

Mbent = M1R(q1) M2R(q2)

• Distribute (“paint”) weights w on vertices of

forearm cylinder

– w = 0 at elbow end

– w = 1 after elbow

• Transform vertices using

M(w) = (1 – w) Mstraight + w Mbent

M1R(q1)

M1R(q1) M2R(0)

M1R(q1) M2R(1/3q2)

M1R(q1) M2R(2/3q2)

w = 1/3

w = 2/3

w = 1

Build an Elbow

glPushMatrix();

glColor3f(0,0,1);

glTranslatef(0,-2,0);

drawquadstrip();

glPopMatrix();

glPushMatrix();

glColor3f(1,1,0);

glRotatef(elbow,0,0,1);

glTranslate(0,0,2);

drawquadstrip();

glPopMatrix();

Two Coordinate Systems

glPushMatrix();

glColor3f(0,0,1);

glTranslatef(0,-2,0);

drawquadstrip();

glColor3f(1,1,0,.5)

glTranslatef(0,4,0);

drawquadstrip();

glPopMatrix();

glPushMatrix();

glRotatef(elbow,0,0,1);

glColor3f(1,1,0);

glTranslatef(0,0,2);

drawquadstrip();

glColor3f(0,0,1,.5);

glTranslatef(0,0,-4);

drawquadstrip();

glPopMatrix();

Blue limb in
yellow limb’s
coordinate

system

Yellow limb in
blue limb’s
coordinate

system

Interpolate the Transformations

for (i = 0; i < 8; i++) {

 weight = i/7.0;

 glPushMatrix();

 glRotatef(weight*elbow,0,0,1);

 glTranslate3f(0,0,-3.5+i);

 drawquad();

 glPopMatrix();

}

Interpolate the Vertices

glBegin(GL_QUAD_STRIP);

for (i = 0; i <= 8; i++) {

 weight = i/8.0;

 glColor3f(weight,weight,1-weight);

 glPushMatrix();

 glRotatef(weight*elbow,0,0,1);

 glVertex2f(-1,-4.+i);

 glVertex2f(1,-4.+i);

 glPopMatrix();

}

glEnd(/*GL_QUAD_STRIP*/);

Interpolate the Matrices

glLoadIdentity();

glGetMatrixf(A);

glRotatef(elbow,0,0,1);

glGetMatrixf(B);

glBegin(GL_QUAD_STRIP);

for (i = 0; i <= 8; i++) {

 weight = i/8.0;

 glColor3f(weight,weight,1-weight);

 C = (1-weight)*A + weight*B;

 glLoadIdentity();

 glMultMatrix(C);

 glVertex2f(-1,-4.+i);

 glVertex2f(1,-4.+i);

}

glEnd(/*GL_QUAD_STRIP*/);

Matrix Palette Skinning

• Each vertex has one or more weight

attributes associated with it

• Each weight determines the effect of

each transformation matrix

• “Bones” – effect of each

transformation is described by motion

on bone from canonical position

• Weights can be painted on a meshed

model to control effect of underlying

bone transformations (e.g. chests,

faces)

Interpolating Matrices

• Skinning interpolates matrices by

interpolating their elements

• Identical to interpolating vertex

positions after transformation

• We’ve already seen problems with

interpolating rotation matrices

• Works well enough for rotations with

small angles

• Rotations with large angles needs

additional processing (e.g. polar

decomposition)

• Quaternions provide a better way to

interpolate rotations…

From: J. P. Lewis, Matt Cordner, and

Nickson Fong. “Pose space deformation: a

unified approach to shape interpolation and

skeleton-driven deformation.”

Proc. SIGGRAPH 2000

(aA + bB)p = a(Ap) + b(Bp)

a,b = weights

A,B = matrices

p = vertex position

