Skinning

CS418 Computer Graphics
 John C. Hart

Simple Inverse Kinematics

- Given target point (x, y) in position space, what are the parameters (θ, ϕ) in configuration space that place the hand on the target point?

- Use Law of Cosines to find θ

$$
\begin{gathered}
d^{2}=a^{2}+b^{2}-2 a b \cos \theta \\
\cos \theta=\left(a^{2}+b^{2}-d^{2}\right) / 2 a b \\
\cos \theta=\left(a^{2}+b^{2}-x^{2}-y^{2}\right) / 2 a b
\end{gathered}
$$

- And to find α

$$
\begin{gathered}
\cos \alpha=\left(a^{2}+d^{2}-b^{2}\right) / 2 a d \\
\cos \alpha=\left(a^{2}+x^{2}+y^{2}-b^{2}\right) / 2 a d
\end{gathered}
$$

- Use arctangent to find β then ϕ

$$
\begin{gather*}
\beta=\operatorname{atan} 2(y, x) \tag{0,0}\\
\phi=\alpha-\beta
\end{gather*}
$$

Skinning

- Elbow joints don't look realistic because geometry detaches
- Transformation hierarchy:
- $R\left(\theta_{1}\right)$ rotates upper-arm cylinder about its shoulder at the origin
- M_{1} moves upper-arm cylinder from the origin to its position in world coordinates
- $R\left(\theta_{2}\right)$ rotates forearm cylinder about its elbow at the origin
- M_{2} moves forearm elbow from the origin to the end of the upper-arm cylinder when its shoulder is based at the origin
- When $\theta_{2} \neq 0$ the elbow end of the upper-arm does not align with the elbow end of the forearm

Skinning

- Solution is to interpolate matrices from the undetached coordinate frame into the correctly oriented coordinate frame per-vertex
- Let

$$
\begin{gathered}
M_{\text {straight }}=M_{1} R\left(\theta_{1}\right) M_{2} R(0) \\
M_{\text {bent }}=M_{1} R\left(\theta_{1}\right) M_{2} R\left(\theta_{2}\right)
\end{gathered}
$$

- Distribute ("paint") weights w on vertices of forearm cylinder
- $w=0$ at elbow end
- $w=1$ after elbow
- Transform vertices using

$$
M(w)=(1-w) M_{\text {straight }}+w M_{\text {bent }}
$$

Build an Elbow

```
glPushMatrix();
glColor3f(0,0,1);
glTranslatef(0,-2,0);
drawquadstrip();
glPopMatrix();
glPushMatrix();
glColor3f(1,1,0);
glRotatef(elbow,0,0,1);
glTranslate(0,0,2);
drawquadstrip();
glPopMatrix();
```


Two Coordinate Systems

```
glPushMatrix();
glColor3f(0,0,1);
glTranslatef(0,-2,0);
drawquadstrip();
glColor3f(1,1,0,.5)
glTranslatef(0,4,0);
drawquadstrip();
glPopMatrix();
glPushMatrix();
glRotatef(elbow,0,0,1);
glColor3f(1,1,0);
glTranslatef(0,0,2);
drawquadstrip();
glColor3f(0,0,1,.5);
glTranslatef(0,0,-4);
drawquadstrip();
glPopMatrix();
```


Interpolate the Transformations

```
for (i = 0; i < 8; i++) {
    weight = i/7.0;
    glPushMatrix();
    glRotatef(weight*elbow,0,0,1);
    glTranslate3f(0,0,-3.5+i) ;
    drawquad();
    glPopMatrix();
}
```


Interpolate the Vertices

```
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= 8; i++) {
    weight = i/8.0;
    glColor3f(weight,weight,1-weight);
    glPushMatrix();
    glRotatef(weight*elbow, 0,0,1);
    glVertex2f(-1,-4.+i);
    glVertex2f(1,-4.+i);
    glPopMatrix();
}
glEnd(/*GL_QUAD_STRIP* /) ;
```


Interpolate the Matrices

```
glLoadIdentity();
glGetMatrixf(A) ;
glRotatef(elbow,0,0,1);
glGetMatrixf(B);
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= 8; i++) {
    weight = i/8.0;
    glColor3f(weight,weight,1-weight);
    C = (1-weight)*A + weight*B;
    glLoadIdentity();
    glMultMatrix(C);
    glVertex2f(-1,-4.+i);
    glVertex2f(1,-4.+i);
}
glEnd(/*GL_QUAD_STRIP* /) ;
```


Matrix Palette Skinning

- Each vertex has one or more weight attributes associated with it
- Each weight determines the effect of each transformation matrix
- "Bones" - effect of each transformation is described by motion on bone from canonical position
- Weights can be painted on a meshed model to control effect of underlying bone transformations (e.g. chests, faces)

Interpolating Matrices

- Skinning interpolates matrices by interpolating their elements
- Identical to interpolating vertex positions after transformation
- We've already seen problems with interpolating rotation matrices
- Works well enough for rotations with small angles
- Rotations with large angles needs additional processing (e.g. polar decomposition)
- Quaternions provide a better way to interpolate rotations...

