Shadows

CS418 Computer Graphics
 John C. Hart

Shadowing

- Shadows indicate light occlusion
- Fix object positions relative to each other

Perspective Distortion

Shadow Buffer

- Williams, SIGGRAPH 78
- Render scene twice from
 viewpoint

$$
(x, y, z)_{\text {screen }}=W P V(x, y, z)_{\text {world }}
$$

- Once with light source on
- Once only with ambient
- Save a z-buffer
- Render scene from light position

$$
(x, y, z)_{\text {light }}=W_{l} P_{l} V_{l}(x, y, z)_{\text {world }}
$$

- Save only z-buffer
- For each viewpoint image pixel compute
$(x, y, z)_{\text {vis }}=W_{l} P_{l} V_{l} V^{-1} P^{-1} W^{-1}(x, y, z)_{\text {screen }}$
- If $z_{\text {vis }}<z_{\text {light }}$ at $(x, y)_{\text {vis }}=(x, y)_{\text {light }}$
- Then pixel is in shadow

Shadow Buffer

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint

$$
(x, y, z)_{\text {screen }}=W P V(x, y, z)_{\text {world }}
$$

- Once with light source on
- Once only with ambient
- Save a z-buffer
- Render scene from light position $(x, y, z)_{\text {light }}=W_{l} P_{l} V_{l}(x, y, z)_{\text {world }}$
- Save only z-buffer
- For each viewpoint image pixel
 compute

$$
(x, y, z)_{\mathrm{vis}}=W_{l} P_{l} V_{l} V^{-1} P^{-1} W^{-1}(x, y, z)_{\text {screen }}
$$

- If $z_{\text {vis }}<z_{\text {light }}$ at $(x, y)_{\text {vis }}=(x, y)_{\text {light }}$
- Then pixel is in shadow

Shadow Buffer

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint

$$
(x, y, z)_{\text {screen }}=W P V(x, y, z)_{\text {world }}
$$

- Once with light source on
- Once only with ambient
- Save a z-buffer
- Render scene from light position $(x, y, z)_{\text {light }}=W_{l} P_{l} V_{l}(x, y, z)_{\text {world }}$
- Save only z-buffer
- For each viewpoint image pixel compute
$(x, y, z)_{\text {vis }}=W_{l} P_{l} V_{l} V^{-1} P^{-1} W^{-1}(x, y, z)_{\text {screen }}$
- If $z_{\text {vis }}<z_{\text {light }}$ at $(x, y)_{\text {vis }}=(x, y)_{\text {light }}$

- Then pixel is in shadow

Shadow Buffer

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint

$$
(x, y, z)_{\text {screen }}=W P V(x, y, z)_{\text {world }}
$$

- Once with light source on
- Once only with ambient
- Save a z-buffer
- Render scene from light position $(x, y, z)_{\text {light }}=W_{l} P_{l} V_{l}(x, y, z)_{\text {world }}$
- Save only z-buffer
- For each viewpoint image pixel
 compute

$$
(x, y, z)_{\mathrm{vis}}=W_{l} P_{l} V_{l} V^{-1} P^{-1} W^{-1}(x, y, z)_{\mathrm{screen}}
$$

- If $z_{\text {vis }}<z_{\text {light }}$ at $(x, y)_{\text {vis }}=(x, y)_{\text {light }}$
- Then pixel is in shadow

Shadow Buffer

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint

$$
(x, y, z)_{\text {screen }}=W P V(x, y, z)_{\text {world }}
$$

- Once with light source on
- Once only with ambient
- Save a z-buffer
- Render scene from light position $(x, y, z)_{\text {light }}=W_{l} P_{l} V_{l}(x, y, z)_{\text {world }}$
- Save only z-buffer
- For each viewpoint image pixel
 compute

$$
(x, y, z)_{\mathrm{vis}}=W_{l} P_{l} V_{l} V^{-1} P^{-1} W^{-1}(x, y, z)_{\mathrm{screen}}
$$

- If $z_{\text {vis }}<z_{\text {light }}$ at $(x, y)_{\text {vis }}=(x, y)_{\text {light }}$
- Then pixel is in shadow

Numerical Analysis

Percentage Closer Filtering

- Reeves, Salesin, Cook, SIGGRAPH 87
- Shadow aliasing occurs when numerical inaccuracy and discretization causes sample to compare to the wrong depth near an edge
- Can be fixed by comparing sample in a neighborhood (e.g. 3×3 pixels) and filtering the binary shadow answer
- Can also be extended to generate soft shadows

a) Ordinary texture map filtering. Does not work for depth maps.

b) Percentage closer filtering.

