Shadows

CS418 Computer Graphics John C. Hart

Shadowing

- Shadows indicate light occlusion
- Fix object positions relative to each other

Perspective Distortion

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint
 - $(x,y,z)_{\text{screen}} = WPV(x,y,z)_{\text{world}}$
 - Once with light source on
 - Once only with ambient
 - Save a z-buffer
- Render scene from light position
 (x,y,z)_{light} = W_lP_lV_l (x,y,z)_{world}
 – Save only z-buffer
- For each viewpoint image pixel compute

 $(x,y,z)_{vis} = W_l P_l V_l V^{-1} P^{-1} W^{-1} (x,y,z)_{screen}$

- If $z_{vis} < z_{light}$ at $(x,y)_{vis} = (x,y)_{light}$
- Then pixel is in shadow

Light Position

Viewpoint

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint
 - $(x,y,z)_{screen} = WPV(x,y,z)_{world}$
 - Once with light source on
 - Once only with ambient
 - Save a z-buffer
- Render scene from light position
 (x,y,z)_{light} = W_lP_lV_l (x,y,z)_{world}
 – Save only z-buffer
- For each viewpoint image pixel compute
- $(x,y,z)_{vis} = W_l P_l V_l V^{-1} P^{-1} W^{-1} (x,y,z)_{screen}$
- If $z_{vis} < z_{light}$ at $(x,y)_{vis} = (x,y)_{light}$
- Then pixel is in shadow

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint
 - $(x,y,z)_{\text{screen}} = WPV(x,y,z)_{\text{world}}$
 - Once with light source on
 - Once only with ambient
 - Save a z-buffer
- Render scene from light position
 (x,y,z)_{light} = W_lP_lV_l (x,y,z)_{world}
 – Save only z-buffer
- For each viewpoint image pixel compute
- $(x,y,z)_{vis} = W_l P_l V_l V^{-1} P^{-1} W^{-1} (x,y,z)_{screen}$
- If $z_{vis} < z_{light}$ at $(x,y)_{vis} = (x,y)_{light}$
- Then pixel is in shadow

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint
 - $(x,y,z)_{\text{screen}} = WPV(x,y,z)_{\text{world}}$
 - Once with light source on
 - Once only with ambient
 - Save a z-buffer
- Render scene from light position
 (x,y,z)_{light} = W_lP_lV_l (x,y,z)_{world}
 – Save only z-buffer
- For each viewpoint image pixel compute
- $(x,y,z)_{vis} = W_l P_l V_l V^{-1} P^{-1} W^{-1} (x,y,z)_{screen}$
- If $z_{vis} < z_{light}$ at $(x,y)_{vis} = (x,y)_{light}$
- Then pixel is in shadow

- Williams, SIGGRAPH 78
- Render scene twice from viewpoint
 - $(x,y,z)_{\text{screen}} = WPV(x,y,z)_{\text{world}}$
 - Once with light source on
 - Once only with ambient
 - Save a z-buffer
- Render scene from light position $(x,y,z)_{\text{light}} = W_l P_l V_l (x,y,z)_{\text{world}}$
 - Save only z-buffer
- For each viewpoint image pixel compute
- $(x,y,z)_{vis} = W_l P_l V_l V^{-1} P^{-1} W^{-1} (x,y,z)_{screen}$
- If $z_{vis} < z_{light}$ at $(x,y)_{vis} = (x,y)_{light}$
- Then pixel is in shadow

Numerical Analysis

Percentage Closer Filtering

- Reeves, Salesin, Cook, SIGGRAPH 87
- Shadow aliasing occurs when numerical inaccuracy and discretization causes sample to compare to the wrong depth near an edge
- Can be fixed by comparing sample in a neighborhood (e.g. 3x3 pixels) and filtering the binary shadow answer
- Can also be extended to generate soft shadows

b) Percentage closer filtering.