Quaternions

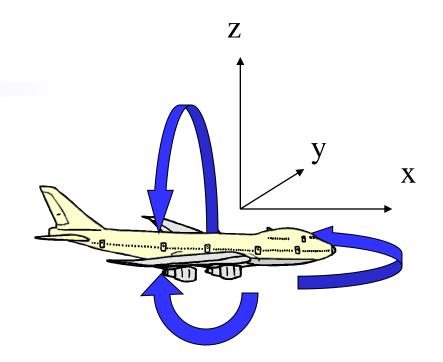
John C. Hart CS 318 Interactive Computer Graphics

Rigid Body Dynamics

- Rigid bodies
 - Inflexible
 - Center of gravity
 - Location in space
 - Orientation in space
- Rigid body dynamics
 - Force applied to object relative to center of gravity
 - Rotation in space about center of gravity
- Orientation of a rigid body is a rotation from a fixed canonical coordinate frame
- Representing orientation = representing rotation

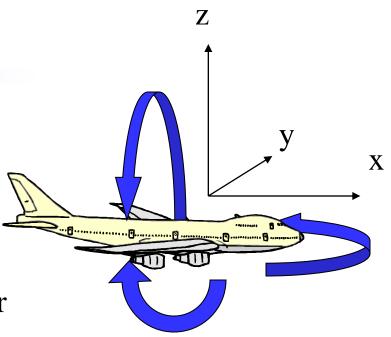
Euler Angles

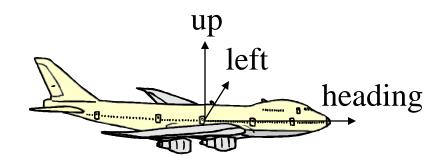
- Airplane orientation
 - Roll
 - rotation about x
 - Turn wheel
 - Pitch
 - rotation about y
 - Push/pull wheel
 - Yaw
 - rotation about z
 - Rudder (foot pedals)
- Airplane orientation
 - Rx(roll) Ry(pitch) Rz(yaw)



Local v. Global

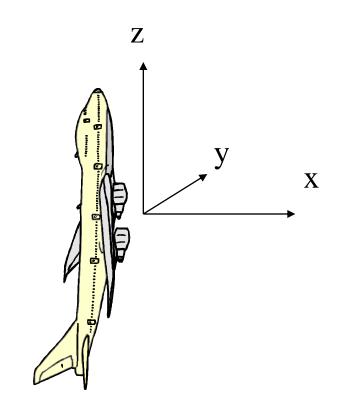
- Roll 90 followed by pitch 90
- Which direction is plane heading?
 - In the y direction?
 - Or in the z direction?
- Depends on whether axes are local or global
- Airplane axes are local
 - heading, left, up
- Need an orientation to represent airplane coordinate system
- Orientation needs to be global





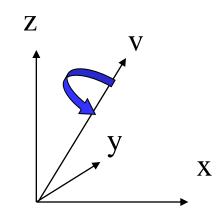
Gimbal Lock

- Airplane orientation
 - Rx(roll) Ry(pitch) Rz(yaw)
- When plane pointing up (pitch = 90), yaw is meaningless, roll direction becomes undefined
- Two axes have collapsed onto each other



Space of Orientations

- Any rotation Rx Ry Rz can be specified by a single rotation by some angle about some line through the origin
- Proof: Rx, Ry and Rz are special unitary
 - Columns (and rows) orthogonal
 - Columns (and rows) unit length
 - Product also special unitary
 - Thus product is a rotation
- Represent orientation by rotation axis (unit vector, line through origin) and rotation angle (scalar)

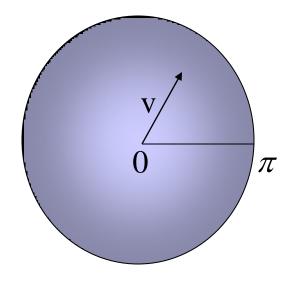


Orientation Ball

• Vector **v** represents orientation

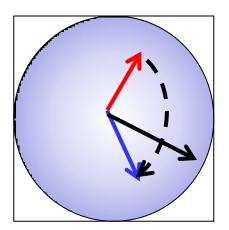
 $||\mathbf{v}|| \le \pi$

- Decompose $\mathbf{v} = \boldsymbol{\theta} \mathbf{u}$
 - θ = angle of rotation: $0 \le \theta \le \pi$
 - -**u** = axis of rotation: ||**u**|| = 1
- Angles greater than π represented by –u
- All orientations represented by a point in the orientation ball



ArcBall

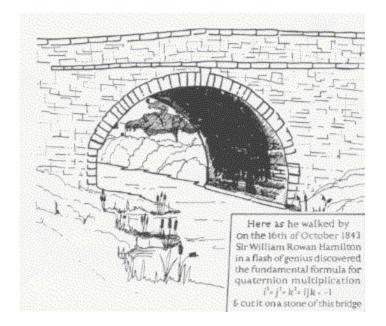
- How to rotate something on the screen?
- Assume canvas (window) coordinates
- Click one point (x_0, y_0)
- Drag to point (x_1, y_1)
- Consider sphere over screen
- Then $z_0 = \operatorname{sqrt}(1 x_0^2 y_0^2)$ and $z_1 = \operatorname{sqrt}(1 - x_1 - y_1)$ give points on sphere \mathbf{v}_0 and \mathbf{v}_1 .
- Then rotation axis is $\mathbf{u} = \mathbf{v}_0 \times \mathbf{v}_1$ unitized
- Angle is $\theta = \sin^{-1} \| \mathbf{v}_0 \times \mathbf{v}_1 \|$



Quaternions

- Quaternions are 4-D numbers $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$
 - With one real axis
- And three imaginary axes: **i**,**j**,**k**
- Imaginary multiplication rules





Hamilton Math Inst., Trinity College

Quaternion Multiplication

$$(a_1 + b_1\mathbf{i} + c_1\mathbf{j} + d_1\mathbf{k}) \times (a_2 + b_2\mathbf{i} + c_2\mathbf{j} + d_2\mathbf{k})$$

$$= a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2})\mathbf{i} + (a_{1}c_{2} + c_{1}a_{2} + d_{1}b_{2} - b_{1}d_{2})\mathbf{j} + (a_{1}d_{2} + d_{1}a_{2} + b_{1}c_{2} - c_{1}b_{2})\mathbf{k}$$

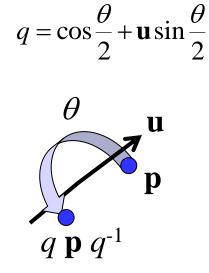
- Scalar, vector pair: $\mathbf{q} = (a, \mathbf{v})$, where $\mathbf{v} = (b, c, d) = b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$
- Multiplication combines dot and cross products

$$q_1 q_2 = (a_1, \mathbf{v}_1) (a_2, \mathbf{v}_2) = (a_1 a_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, a_1 \mathbf{v}_2 + a_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2)$$

Unit Quaternions

- Length: $|q|^2 = a^2 + b^2 + c^2 + d^2$
- Let $q = \cos(\theta/2) + \sin(\theta/2)$ **u** be a unit quaternion: $|q| = |\mathbf{u}| = 1$.
- Let point $\mathbf{p} = (x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$
- Then the product *q* **p** *q*⁻¹ rotates the point **p** about axis **u** by angle *θ*
- Inverse of a unit quaternion is its conugate (negate the imaginary part) $q^{-1} = (\cos(\theta/2) + \sin(\theta/2) \mathbf{u})^{-1}$ $= \cos(-\theta/2) + \sin(-\theta/2) \mathbf{u}$ $= \cos(\theta/2) - \sin(\theta/2) \mathbf{u}$
- Composition of rotations

 $q_{12} = q_1 \ q_2 \neq q_2 \ q_1$



Quaternion to Matrix

The unit quaternion

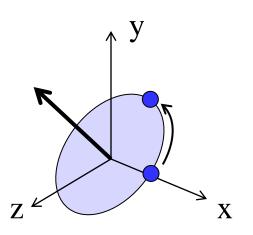
$$q = a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k}$$

corresponds to the rotation matrix

$$\begin{bmatrix} a^{2} + b^{2} - c^{2} - d^{2} & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & a^{2} - b^{2} + c^{2} - d^{2} & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & a^{2} - b^{2} - c^{2} + d^{2} \end{bmatrix}$$

Example

• Rotate the point (1,0,0) about the axis (0,.707,.707) by 90 degrees



$$p = 0 + 1i + 0j + 0k$$
$$= i$$

$$q = \cos 45 + 0i + (\sin 45) .707 j + (\sin 45) .707 k$$

= .707 + .5 j + .5 k

$$\begin{array}{ll} q \ p \ q^{-1} &= (.707 + .5j + .5k)(i)(.707 - .5j - .5k) \\ &= (.707i + .5(-k) + .5j)(.707 - .5j - .5k) \\ &= (.5i - .354k + .354j) + (-.354k - .25i - .25) + (.354j + .25 - .25i) \\ &= 0 + (.5 - .25 - .25)i + (.354 + .354)j + (-.354 - .354)k \\ &= .707j - .707k \end{array}$$

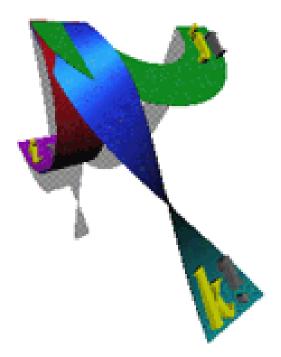
Exponential Map

- Recall complex numbers $e^{i\theta} = \cos \theta + i \sin \theta$
- Quaternion $a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ can be written like a complex number $a + \beta \mathbf{u}$ where $\beta = ||(b,c,d)||$ and \mathbf{u} is a unit pure quaternion $\mathbf{u} = (b\mathbf{i} + c\mathbf{j} + d\mathbf{k})/||(b,c,d)||$
- Exponential map for quaternions $e^{\mathbf{u}\theta} = \cos\theta + \mathbf{u}\sin\theta$
- Quaternion that rotates by θ about **u** is $q = e^{\theta/2} \mathbf{u} = \cos \theta/2 + \sin \theta/2 \mathbf{u}$

SLERP

- Interpolating orientations requires a "straight line" between unit quaternion orientations on the 3-sphere
- The base orientation consisting of a zero degree rotation is represented by the unit quaternion 1 + 0i + 0j + 0k
- We can interpolate from the base orientation to a given orientation (θ ,**u**) as $q(t) = \cos t \theta/2 + \mathbf{u} \sin t \theta/2 = e^{t(\theta/2)\mathbf{u}}$
- To interpolate from q_1 to q_2 We can interpolate from the base

 $q(t) = q_1(q_1^{-1}q_2)^t$



Derivation

 $\theta_2 - \theta_1$ u_2 u_1

- To interpolate from q_1 to q_2 we can interpolate from the base
- $q(t) = q_1(q_1^{-1}q_2)^t$ = $\exp((\theta_1/2) \mathbf{u}_1) (\exp((-\theta_1/2) \mathbf{u}_1) \exp((\theta_2/2) \mathbf{u}_2))^t$ = $\exp((\theta_1/2) \mathbf{u}_1 + t((-\theta_1/2) \mathbf{u}_1) + t((\theta_2/2) \mathbf{u}_2))$ = $\exp((1-t)(\theta_1/2) \mathbf{u}_1 + t((\theta_2/2) \mathbf{u}_2))$
- Rotation interpolation is the exponential map of a linear interpolation between points in the orientation ball

