Animation

CS418 Computer Graphics
 John C. Hart

Keyframe Animation

- Set target positions for vertices at "key" frames in animations
- Linearly interpolate vertex positions between targets at intervening frames
- Lots can go wrong (like the feet)
- Can be fixed by adding key frames
- Piecewise linear approach to animation
- Need same number and configuration of vertices at key frames for intervening frames to make sense
- Often need to find correspondences between two collections of vertices

Keyframe Animation

- Set target positions for vertices at "key" frames in animations
- Linearly interpolate vertex positions between targets at intervening frames
- Lots can go wrong (like the feet)
- Can be fixed by adding key frames
- Piecewise linear approach to animation

- Need same number and configuration of vertices at key frames for intervening frames to make sense
- Often need to find correspondences between two collections of vertices

Polar Decomposition

- Linear affine interpolation of transformation matrices does not accommodate rotation
- Let M be the upper-left 3×3 submatrix of a 4×4 homogeneous transformation matrix
- Decompose: $M=Q S$
- Q : non-linearly varying part (rotation)
- S : linearly varying part (scale, shear)
- Initialize $Q=M$
- Replace $Q=1 / 2\left(Q+Q^{-\mathrm{T}}\right)$ until it convergence to a 3×3 rotation matrix $\left(Q^{\mathrm{T}}=Q^{-1}\right)$
- Then Q contains the rotation part of M
- And $S=Q^{\mathrm{T}} M$ contains the scaling part
- Interpolate S linearly per-element
- Interpolate Q using quaternions

