MP4: Smooth I

CS 418 – Interactive Computer Graphics TA: Gong Chen Fall 2012

Today's Topics

• MP4 Explaination

-Subdivision 40%

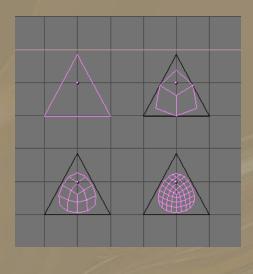
- Curved camera path 10%
- Appearance (texture/lighting/color) 10%
- Compilation 20%
- Documentation 20%
- Non-manifold mesh
 - catmul-clark subdivision coding scheme
- camera transitions
- More about particles

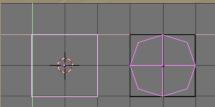
Non-Manifold Mesh

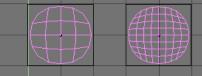
- A "Non-Manifold" mesh is a mesh for which there are edges belonging to *more* than two faces.
- In general a "Non-Manifold" mesh occurs when you have internal faces and the like.
- (make sure you have a manifold mesh)
- http://www.youtube.com/watch?feature=player_embedded&v=vrqx p89ilM4

catmul-clark subdivision

- Start with a manifold mesh.
- All the vertices in the mesh are called original points.
- Loops on:
 1. each face
 2. each edge
 3. each original point *P*
- Connect the new points

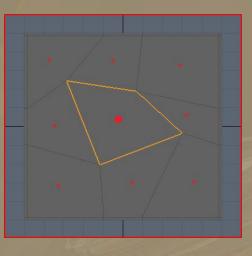




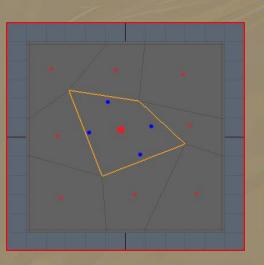


• For each face, add a *face* point

 Set each face point to be the <u>centroid</u> of all original points for the respective face.

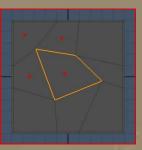


- For each edge, add an *edge* point
 - Set each edge point to be the *average of the two neighbouring face points and its two original endpoints*.



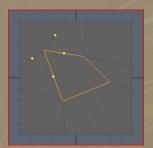
• For each original point *P*:

F = average F of all n face points
 for faces touching P



R = average R of all n edge
 midpoints for edges touching P

 each edge midpoint is the average of its two endpoint vertices.

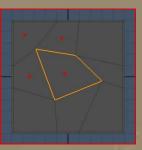


- "Move" each original point to the point (n=4):

F + 2R + (n-3)P

• For each original point *P*:

F = average F of all n face points
 for faces touching P



R = average R of all n edge
 midpoints for edges touching P

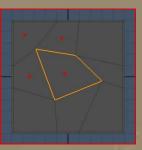
 each edge midpoint is the average of its two endpoint vertices.

- "Move" each original point to the point (n=4):

F + 2R + (n-3)P

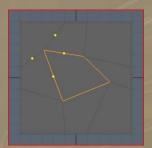
• For each original point *P*:

F = average F of all n face points
 for faces touching P



R = average R of all n edge
 midpoints for edges touching P

 each edge midpoint is the average of its two endpoint vertices.

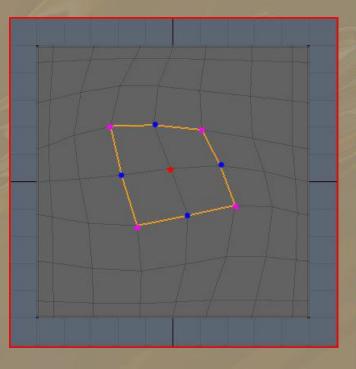


Move "each original point to the point (n=4):

F + 2R + (n-3)P

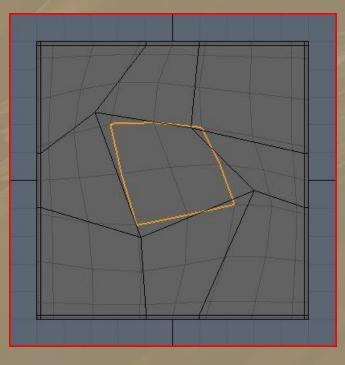
Connect all points:

- Blue = (new) edge points
- Red = (new) face point
- Pink = (modified) vertex



Connect all points:

- Blue = (new) edge points
- Red = (new) face point
- Pink = (modified) vertex



Sharp Edges 1.Tag Edges as "sharp" or "not-sharp" - sh = 0"not sharp" - sh > 0 sharp 2. During Subdivision, if an edge is "sharp", use sharp subdivision rules. Newly created edges, are assigned a sharpness of sh-1. If an edge is "not-sharp", use normal smooth subdivision rules.

Sharp Rules

• FACE (unchanged) $f = \frac{1}{n} \sum_{i=1}^{n} v_i$

• EDGE
$$e = \frac{v_1 + v_2}{2}$$

VERTEX •••••

 $>_2 \quad v_{i+1} = v_i$ Dart (One sharp incident edge)

Crease 2 (Two sharp edges)

(Three or more sharp edges)

Corner 0,1 $v_{i+1} = \frac{n-2}{n}v_i + \frac{1}{n^2}\sum_{j}e_j + \frac{1}{n^2}\sum_{j}f_j$ (Three or more sharp edges)

 \bigcirc

Ref: "Subdivision Surfaces", Geri's Game (1989) : Pixar Animation Studios

 $v_{i+1} = \frac{e_1 + 6v_i + e_2}{8}$

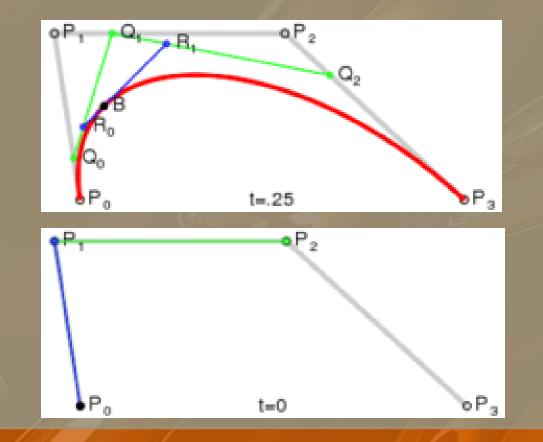
Camera Position Update
Generate Random Key points:

Make sure the points don't go inside the "I"

Interpolate Between the key points using:
 B-spline
 or
 Bezier

Cubic Bezier Curve

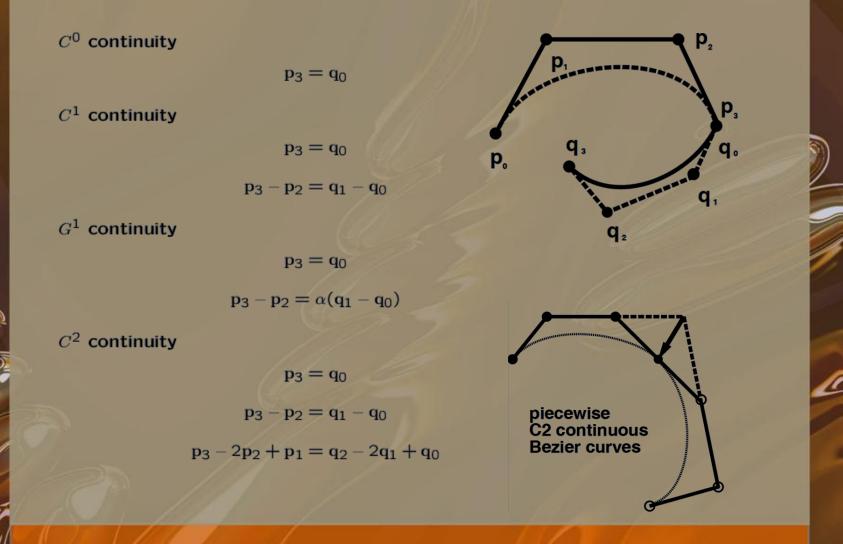
$$\mathbf{B}(t) = (1-t)^{3}\mathbf{P}_{0} + 3(1-t)^{2}t\mathbf{P}_{1} + 3(1-t)t^{2}\mathbf{P}_{2} + t^{3}\mathbf{P}_{3} , t \in [0,1]$$



10

Ref: "Subdivision Surfaces", Geri's Game (1989) : Pixar Animation Studios

Continuity



Achieving C² Continuity

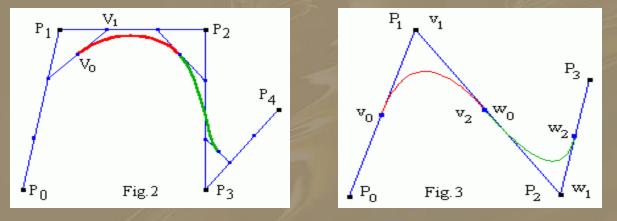
- Find tangent vectors: differences between subsequent key-frame points
 - for example: for the segment between p₁ and p₂ the four points use for the Bézier would be p₁, p₂, 2p₂-p₃, p₃

You can also use the de-Casteljau Algorithm

Cubic B-Spline

$$\mathbf{S}_{i}(t) = \sum_{k=0}^{3} \mathbf{P}_{i-3+k} b_{i-3+k,3}(t) \; ; \; t \in [0,1]$$

- S_i is the *i*th B-spline segment
- P is the set of control points
- segment *i* and *k* is the local control point index



Again for continuity you can use de-Boor's alg.

Hooks Spring Law:

- Two ways:
 - Edges are considered as springs
 - If you don't want to worry about edges you can consider it's neighbor with all vertices...

$$f = -\left[k_{s}(\|x_{a}-x_{b}\|-r)+k_{d}(v_{a}-v_{b})\frac{x_{a}-x_{b}}{\|x_{a}-x_{b}\|}\right]\frac{x_{a}-x_{b}}{\|x_{a}-x_{b}\|}$$

- $k_s = spring constant$
- k_d = damping constant
- r = rest length

Ref: "Particle System Example", Paul Bourke, 1998

Gravitational Attraction

• Two ways:

neighbors the have an edge with it

 all the particles: you need to calculate the average position and add all the mass and consider that as one neighboring particle

$$f = \frac{G m_{a} m_{b}}{\|x_{a} - x_{b}\|^{2}} \frac{x_{a} - x_{b}}{\|x_{a} - x_{b}\|}$$

 $G = universal gravitational constant = 6.672 \times 10-11N m2 kg-2$

Ref: "Particle System Example", Paul Bourke, 1998

Repelling Based on Charge

• particles could have a charge:

Repel : if the charges are the same sign **Attract :** if they are the opposite sign

$$f = \frac{k |q_a| |q_b|}{||x_a - x_b||^2} \frac{x_a - x_b}{||x_a - x_b||}$$

 $k = Coulombs constant = 8.9875 \times 109 N m2 C-2$

Ref: "Particle System Example", Paul Bourke, 1998