
 Particle Systems

CS 418 – Interactive Computer Graphics

TA: Gong Chen

Fall 2012

Particle System

• Particle Dynamic System:

Simulate a massive number of

interacting elements

Particle System

• Basic Examples:

– F=ma rule

– Gravity force

– Bounce back from floor.

• Particle examples:

– simple points, or billboard sprites
• http://www.lighthouse3d.com/opengl/billboarding/index.php

– You cannot use a particle system library

Particle Object

For each particle you need to store:

– Mass

– Position

– Velocity

– Acceleration

– Life Span (Optional)

Reaction to environment

Source

Aging: Time-varying attributes

death

birth

Basic Flow

• For each frame you should :

– Create some new particles

– Delete “dead” particles

– Update particle “Position” based on physics

– Render particles in new positions.

Particle Generation

• Specify a source location to generate particles

• Each particle has initial position & velocity

• Add some randomness in initial condition.

Source

Fix initial condition

Add more randomness

Source

Update particles

• Given forces on this particle. How do
you determine its next position ?

• Euler Method
– Simplest to implement.

– Not very stable, so don’t jump too much at time.

– Beware of accumulated numerical error

• Midpoint Method

Types of Forces
• Unary forces:

– Gravity
• Make object moving down.

• Constant acceleration on all
particles.

• N-ary forces:

– Spring force :
• Add a spring to connect two

particles.

• Force depends on deviation from
rest length.

• Damping : Force that depends on
Rate of change in length.

Update Rules

• Apply all forces on this particle (gravity, etc).

• Acc = F/m

• V = V + Acc* ∆t

• P = P + V* ∆t

• Life = Life - ∆t

 KEEP IN MIND:

 ∆t should not be too large !

Bounce from floor
• Particle can not fall through floor.

• Detect if P.y <= floor height.

• If collide with floor

– Bounce back (Ex: V.y = abs(V.y))

– Add some friction ? Reduce velocity for

each bounce

– Add some randomness in how particles
bounce back.

Rendering

• Simple point will do.
• Alpha blend points for better visual quality.
• Or use bilboards to enhance visual result.

Billboard Stripes
• Use images mapped to quads, rotated

to face the camera to represent
particles (remember texture mapping)

Q&A

