Particle Systems

CS 418 - Interactive Computer Graphics
TA: Gong Chen
Fall 2012

Particle System

- Particle Dynamic System: Simulate a massive number of interacting elements

Particle System

- Basic Examples:
- F=ma rule
- Gravity force
- Bounce back from floor.
- Particle examples:
- simple points, or billboard sprites
- http://www.lighthouse3d.com/opengl/billboarding/index.php
- You cannot use a particle system library

Particle Object

For each particle you need to store:

- Mass
- Position
- Velocity
- Acceleration
- Life Span (Optional)

Basic Flow

- For each frame you should :

- Create some new particles
- Delete "dead" particles
- Update particle "Position" based on physics
- Render particles in new positions.

Reaction to environment
Aging: Time-varying attributes

Particle Generation

- Specify a source location to generate particles
- Each particle has initial position \& velocity
- Add some randomness in initial condition.

Add more randomness
Fix initial condition

Source

Update particles

- Given forces on this particle. How do you determine its next position?
- Euler Method $x\left(t_{0}+h\right)=x_{0}+h \dot{x}\left(t_{0}\right)$
- Simplest to implement.
- Not very stable, so don't jump too much at time.
- Beware of accumulated numerical error
- Midpoint Method

$$
y_{n+1}=y_{n}+h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(t_{n}, y_{n}\right)\right)
$$

Types of Forces

- Unary forces:
- Gravity
- Make object moving down.
- Constant acceleration on all particles.
- N-ary forces:
- Spring force :
- Add a spring to connect two particles.
- Force depends on deviation from rest length.
- Damping : Force that depends on
k_{s} : spring constant k_{d} : damping factor
s : rest length Rate of change in length.

$$
\mathbf{f}_{i}=-\left(k_{s}(\|\mathbf{d}\|-s)+k_{d} \frac{\dot{\mathbf{d}} \cdot \mathbf{d}}{\|\mathbf{d}\|}\right) \frac{\mathbf{d}}{\|\mathbf{d}\|}
$$

$$
\dot{\mathbf{d}}=\dot{\mathbf{x}}_{i}-\dot{\mathbf{y}}
$$

Update Rules

- Apply all forces on this particle (gravity, etc).
- Acc $=F / m$
- $\mathrm{V}=\mathrm{V}+\mathrm{Acc} * \Delta \mathrm{t}$
- $P=P+V^{*} \Delta t$
- Life $=$ Life $-\Delta t$
* KEEP IN MIND:
Δt should not be too large!

Bounce from floor

- Particle can not fall through floor.
- Detect if P.y <= floor height.
- If collide with floor
- Bounce back (Ex: V.y = abs(V.y))
- Add some friction ? \rightarrow Reduce velocity for each bounce
- Add some randomness in how particles bounce back.

Rendering

- Simple point will do.
- Alpha blend points for better visual quality.
- Or use bilboards to enhance visual result.

Billboard Stripes

- Use images mapped to quads, rotated to face the camera to represent particles (remember texture mapping)

3
Gamer as wiewing direction

Q\&A

