
Interactive Computer Graphics
 CS 418 – Spring 2011

Mesh Rendering, Transformation,

Camera Viewing and Projection
in OpenGL

Author: Mahsa Kamali
TA: Gong Chen

Email: gchen10 at illinois.edu

Agenda

 Mesh format
 Drawing with OpenGL
 Matrix transformation
 3 things to take home
 Gimble lock

How to Load Your Mesh

 Customized .obj 3D models with colors.
 Won’t work with a obj reader code.
 You should have skills to write a simple parser

loading the files.

Our Mesh File Format

 You will have a list of vertex
attributes : Positions (v),
Colors (vc), etc.

 Vertices are indexed
according to their orders in
file.

 Another indexed list for
triangles (f)
 Ex : Triangle 1 is formed by

vertex v1,v2 and v3

v 0.0 0.0 0.0

v 1.0 0.0 0.0

…..

vc 1 0 0

vc 0 0 1

…..

f 1 2 3

f 1 3 4

…..

Position v1

Position v2

Color v1

Color v2

Exercise

v 0.0 0.0 0.0
v 1.0 0.0 0.0
v 1.0 1.0 0.0
v 0.0 1.0 0.0

vc 1 0 0
vc 0 0 1
vc 1 0 0
vc 0 1 0

f 1 2 3
f 1 3 4

Draw the object from the given vertex/face list :

Mesh Structure

 Face-index List :

 Recommend to use/implement basic matrix/vector
structure and operations. (ex : libgfx)

 Store vertex attributes in one array

 Store face-vertex indices in another array.

 When rendering, iterate through each face, and grab
vertex attributes based on Indices.

 More complicated structure is possible Half-Edge,
etc.

Display Your Mesh

 Assuming you’ve set up the view/projection
transformation.

 Display one triangle

glBegin(GL_TRIANGLES);
glVertex3f(x1,y1,z1);
glVertex3f(x2,y2,z2);
glVertex3f(x3,y3,z3);

glEnd();

 glBeginDecide which primitive you will display.
 GL_POINTS, GL_LINES, GL_TRIANGLES, etc.

 Display a mesh is similar, just go through each
triangle in the mesh.

 (Put loop between glBegin/glEnd)

Color Your Mesh

 glColor3fSet R,G,B color
 Range from 0.0~1.0. (1.0,1.0,1.0) is white.

 Use the provided colors, or generate your own.

 Ex : Color one triangle with Red, Green, Blue at each vertex

glBegin(GL_TRIANGLES);
glColor3f(1.0,0.0,0.0); //red
glVertex3f(x1,y1,z1);
glColor3f(0.0,1.0,0.0); // green
glVertex3f(x2,y2,z2);
glColor3f(0.0,0.0,1.0); // blue
glVertex3f(x3,y3,z3);

glEnd();

OpenGL Matrix Transformation

 Essential for interactive viewing/animation.

 Things to Take Home

 #1 : You are modifying a global “current matrix”

 #2 : The “last” transformation gets applied “first”.

 #3 : OpenGL store matrix in “Column Major”

 glScalef (2.5, 2.5, 1.0);

Review of Matrix Ops.

Scaling

Translation

 glTranslatef(2.5,2.0,0.0);

Translation

Rotation

 glRotatef(90.0, 0.0, 0.0, 1.0)

Rotation

 You may also specify rotation about an arbitrary axis.

#1 Current Matrix

 An OpenGL matrix operation affects a global 4x4
matrix.

 It is the top matrix in the matrix stack you are
currently working on. glMatrixMode

Projection Matrix

Model View Matrix

Current Matrix
glMatrixMode(GL_MODEL_VIEW)

glMatrixMode(GL_PROJECTION)

glRotatef(1.0,0.0,0.0,1.0);

gluPerspective(…);

M1=M1*R

M2=M2*P

#1 Current Matrix

 When rendering, both of them are combined
to transform the object.

MVP = (Projection)*(Model View)

Projection Matrix

Model View Matrix

V_Transform = MVP * V

Object V

Transform

V_Transform

MVP

#2 Last Transform Applied First

 OpenGL Post-multiply new transformation with
current matrix when we call glRotate, glTranslate, or
glScale.

 The last transformation is applied first to the object.

glRotatef(1.0,0.0,0.0,1.0);

M=I

glLoadIdentity();

R

glTranslatef(0.5,0.5,0.5);

T

glRotatef(1.0,0.0,0.0,1.0);

glTranslatef(0.5,0.5,0.5);

R T M=I

glLoadIdentity();

Exercise

Draw the result of the following OpenGL transformation code.

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(1.5, 1.0, 1.0);
glRotatef(90.0, 0.0, 0.0, 1.0);
glTranslatef(2.0, 2.0, 0.0);
draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Useful OpenGL Matrix Ops.

 glLoadIdentity : M = I

 glScale : M = MS

 glTranslate : M = MT

 glRotate : Specify rotation axis, angle. M =
MR

Useful OpenGL Matrix Ops.

 glLoadMatrix(M0) : M = M0

 glGetFloat(MatrixMode,M0) : M0 = M

 glMultMatrix(M0) : M = M*M0

 Caveat : OpenGL store matrix in “Column
Major” instead of “Row Major”

Column Major

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2D array in C :

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Matrix in OpenGL :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Given a 1D array of 16 floats :

Pre-multiply ?

 What to do if you want to pre-multiply the matrix ?

M=RM ?
 Make use of “glGetFloat” & “glMultMatrix”.

glLoadIdentity();

glGetFloat(MODEL_VIEW,tempM);

glTranslatef(0.3,0.3,0.2);

glLoadIdentity();

glMultMatrix(tempM);

glRotatef(1.0,0.0,0.0,1.0);

M=I T tempM=

M=I R tempM

 Useful for updating transformation with UI control.

MP1 : Mesh Rendering

 Due on Sep. 25, 2012 at 3:30pm
 Compass is sometimes not very stable. Try to

submit earlier.

 Email me if you encounter last minute failure on
Compass.

 Depth Test : “glEnable(GL_DEPTH_TEST);”

 glRotate3f :
 OpenGL will normalize the axis.

Interactive Viewing

 Interactive viewing is desired for 3D model display.

 Adjust the orientation of shape with UI

 FPS style : Changing the first person view

 Exploring the environment

 ArcBall (TrackBall) : Rotate the object at view center.

 Easier to view a single object in all direction

Euler Angles

 At most 75% of credit if you only implement
Euler Angles.

 Rotate about X,Y,Z axis respectively.
 Very easy to implement.
 Keep track of X,Y,Z angles.

glRotatef(angleX,1,0,0);

glRotatef(angleY,0,1,0);

glRotatef(angleZ,0,0,1);

drawObject();

gluUnProject(mouse_x, mouse_y, 0.0, modelview_matrix,
projection_matrix, viewport_matrix, &x, &y, &z)

Gyroscope

(From Wikipedia)

Euler Angles

 Problem : Gimbal Lock
 Occurs when two axes

are aligned
 Second and third

rotations have effect of
transforming earlier
rotations
 ex: Rot x, Rot y, Rot z
▪ If Rot y = 90 degrees,

Rot z == -Rot x

Arcball Interface

 Intuition : Make use of the mouse position to
control object orientation
 Rotate object about some axis based on mouse

movement

Arcball Interface

 Keep track a global rotation matrix Rg.
 Whenever there is a mouse movement,

create a new rotation Rn.
 Update global rotation matrix Rg = Rn*Rg.

 How to define Rn ?

Arcball Interface

 To define a rotation : axis & angle
 Think of orientation as a point on the unit hemi-

sphere
 How to rotate p1 to p2 ?

p2

p1

n

angle

n = p1Xp2

|n| = sin(angle)

angle = asin(|n|)

axis = n/|n|

Arcball Interface

 How to find a point on
sphere based on
normalized screen
coordinates ?

 Map a 2D point (x,y)
back to a unit sphere

 z = sqrt(1 – x*x – y*y)

(x,y,0)
sp(x,y,z)

Arcball Interface

 Summary:

 Get start/end mouse 2D position (glutMotion)

 Map them to 3D points v1,v2 on hemi-sphere

 Find rotation axis/angles from v1,v2

 Update object orientation with rotation axis/angle

▪ (Pre-multiply new rotation with current rotation)

Rotation About Any Axis

 Check lecture note :

 You can also call glRotate3f to generate it.

Rendering Accleration

 Calling glBegin/glEnd is not optimal.

 Many function calls

 Repeated vertices

 Data transfer

 Acceleration :

 Method 1: Display List

 Method 2: VertexArray

 Method 3: Vertex Buffer Object (VBO)

Display Lists

Method One

Display Lists

 A display list is a convenient and efficient way to
name and organize a set of OpenGL commands.

 glCallList(wheel_id);

 modelview transformation

 glCallList(wheel_id);

 modelview transformation

 glCallList(wheel_id);

Display Lists

 To optimize performance, an OpenGL display
list is a cache of commands rather than a
dynamic database.

 In other words, once a display list is created,

it can't be modified on the fly.

Display List

 A Display List is simply a group of OpenGL
commands and arguments

 Most OpenGL drivers compile and accelerate

Display Lists by
 storing all static data on video ram
 optimizing OpenGL commands execution
 Frustum & occlusion culling

 Small driver overhead
 No time expensive data transfer

Display List

 Usage : Create a new list
 Call glBegin/glEnd /glVertex to store commands in the

display list.
 glCallList to reuse a display list.

Red Book Sixth Edition :

Chapter 7.

glGenList

 glNewList

 glEndList

 glCallList

 …..

Vertex Arrays

Method Two

The Basic Idea

A

B

C

D

E

F G

H

0 0 0 0 0 1 1 0

A B C D E F G H A B B C F E F G

A D H E C H G D

Vertices Stored in an Array

Indices of Quads into the vertex array

1 1 0 0 0 1 0 0

1 1 1 1 1 1 1 0

Vertex G

Vertex Arrays

 Similar to conventional approach, but: One
driver call for all vertices

 small driver overhead

 Data resides in CPU memory.

 Easier to update

 Still transfering all vertices

 lot of transfer (CPU/AGP-bound bottleneck)

Vertex Arrays

 Usage : Enable client state for vertex array.

 Provide pointers to your veritces/faces in memory.

 Call glDrawElement to rendering everything at once.

Refer to Red Book for more

information

glEnableClientState

 glVertexPointer

 glColorPointer

 glDrawElements

 …..

Buffer Object

Method Three

Vertex Buffer Object (VBO)

 A vertex buffer object (VBO) is a powerful feature
that allows storing vertex data in video ram

Vertex Buffer Object (VBO)

 Very similar to vertex arrays
 VBOs hold geometry and state on the

graphics hardware

 Significant reduction in rendering time

 Provide mapping from application memory
to graphics memory

 Allows fast updates when geometry changes

Vertex Buffer Object

 glGenBuffers

 glBindBuffers

 glBufferData

 …..

 Usage : Allocate enough buffer space in video
memory.

 Maps buffer memory to represent vertex/indices data.
 Render as vertex arrays.

Refer to the Red Book for

more details

Summary

 Use Display Lists or Vertex Buffer Objects
to store static objects

 Vertex Arrays or dynamic Vertex Buffer for
deformable objects

 DrawElements is expensive

 draw as many Triangles per DrawElements as
possible

 Keep data transfer as small as possible

Q&A

