
Interactive Computer Graphics
 CS 418 – Spring 2011

Mesh Rendering, Transformation,

Camera Viewing and Projection
in OpenGL

Author: Mahsa Kamali
TA: Gong Chen

Email: gchen10 at illinois.edu

Agenda

 Mesh format
 Drawing with OpenGL
 Matrix transformation
 3 things to take home
 Gimble lock

How to Load Your Mesh

 Customized .obj 3D models with colors.
 Won’t work with a obj reader code.
 You should have skills to write a simple parser

loading the files.

Our Mesh File Format

 You will have a list of vertex
attributes : Positions (v),
Colors (vc), etc.

 Vertices are indexed
according to their orders in
file.

 Another indexed list for
triangles (f)
 Ex : Triangle 1 is formed by

vertex v1,v2 and v3

v 0.0 0.0 0.0

v 1.0 0.0 0.0

…..

vc 1 0 0

vc 0 0 1

…..

f 1 2 3

f 1 3 4

…..

Position v1

Position v2

Color v1

Color v2

Exercise

v 0.0 0.0 0.0
v 1.0 0.0 0.0
v 1.0 1.0 0.0
v 0.0 1.0 0.0

vc 1 0 0
vc 0 0 1
vc 1 0 0
vc 0 1 0

f 1 2 3
f 1 3 4

Draw the object from the given vertex/face list :

Mesh Structure

 Face-index List :

 Recommend to use/implement basic matrix/vector
structure and operations. (ex : libgfx)

 Store vertex attributes in one array

 Store face-vertex indices in another array.

 When rendering, iterate through each face, and grab
vertex attributes based on Indices.

 More complicated structure is possible  Half-Edge,
etc.

Display Your Mesh

 Assuming you’ve set up the view/projection
transformation.

 Display one triangle

glBegin(GL_TRIANGLES);
glVertex3f(x1,y1,z1);
glVertex3f(x2,y2,z2);
glVertex3f(x3,y3,z3);

glEnd();

 glBeginDecide which primitive you will display.
 GL_POINTS, GL_LINES, GL_TRIANGLES, etc.

 Display a mesh is similar, just go through each
triangle in the mesh.

 (Put loop between glBegin/glEnd)

Color Your Mesh

 glColor3fSet R,G,B color
 Range from 0.0~1.0. (1.0,1.0,1.0) is white.

 Use the provided colors, or generate your own.

 Ex : Color one triangle with Red, Green, Blue at each vertex

glBegin(GL_TRIANGLES);
glColor3f(1.0,0.0,0.0); //red
glVertex3f(x1,y1,z1);
glColor3f(0.0,1.0,0.0); // green
glVertex3f(x2,y2,z2);
glColor3f(0.0,0.0,1.0); // blue
glVertex3f(x3,y3,z3);

glEnd();

OpenGL Matrix Transformation

 Essential for interactive viewing/animation.

 Things to Take Home

 #1 : You are modifying a global “current matrix”

 #2 : The “last” transformation gets applied “first”.

 #3 : OpenGL store matrix in “Column Major”

 glScalef (2.5, 2.5, 1.0);

Review of Matrix Ops.

Scaling

Translation

 glTranslatef(2.5,2.0,0.0);

Translation

Rotation

 glRotatef(90.0, 0.0, 0.0, 1.0)

Rotation

 You may also specify rotation about an arbitrary axis.

#1 Current Matrix

 An OpenGL matrix operation affects a global 4x4
matrix.

 It is the top matrix in the matrix stack you are
currently working on.  glMatrixMode

Projection Matrix

Model View Matrix

Current Matrix
glMatrixMode(GL_MODEL_VIEW)

glMatrixMode(GL_PROJECTION)

glRotatef(1.0,0.0,0.0,1.0);

gluPerspective(…);

M1=M1*R

M2=M2*P

#1 Current Matrix

 When rendering, both of them are combined
to transform the object.

MVP = (Projection)*(Model View)

Projection Matrix

Model View Matrix

V_Transform = MVP * V

Object V

Transform

V_Transform

MVP

#2 Last Transform Applied First

 OpenGL Post-multiply new transformation with
current matrix when we call glRotate, glTranslate, or
glScale.

 The last transformation is applied first to the object.

glRotatef(1.0,0.0,0.0,1.0);

M=I

glLoadIdentity();

R

glTranslatef(0.5,0.5,0.5);

T

glRotatef(1.0,0.0,0.0,1.0);

glTranslatef(0.5,0.5,0.5);

R T M=I

glLoadIdentity();

Exercise

Draw the result of the following OpenGL transformation code.

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(1.5, 1.0, 1.0);
glRotatef(90.0, 0.0, 0.0, 1.0);
glTranslatef(2.0, 2.0, 0.0);
draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Exercise

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glScalef(1.5, 1.0, 1.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glTranslatef(2.0, 2.0, 0.0);

draw_teapot_image();

Useful OpenGL Matrix Ops.

 glLoadIdentity : M = I

 glScale : M = MS

 glTranslate : M = MT

 glRotate : Specify rotation axis, angle. M =
MR

Useful OpenGL Matrix Ops.

 glLoadMatrix(M0) : M = M0

 glGetFloat(MatrixMode,M0) : M0 = M

 glMultMatrix(M0) : M = M*M0

 Caveat : OpenGL store matrix in “Column
Major” instead of “Row Major”

Column Major

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2D array in C :

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Matrix in OpenGL :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Given a 1D array of 16 floats :

Pre-multiply ?

 What to do if you want to pre-multiply the matrix ?

M=RM ?
 Make use of “glGetFloat” & “glMultMatrix”.

glLoadIdentity();

glGetFloat(MODEL_VIEW,tempM);

glTranslatef(0.3,0.3,0.2);

glLoadIdentity();

glMultMatrix(tempM);

glRotatef(1.0,0.0,0.0,1.0);

M=I T tempM=

M=I R tempM

 Useful for updating transformation with UI control.

MP1 : Mesh Rendering

 Due on Sep. 25, 2012 at 3:30pm
 Compass is sometimes not very stable. Try to

submit earlier.

 Email me if you encounter last minute failure on
Compass.

 Depth Test : “glEnable(GL_DEPTH_TEST);”

 glRotate3f :
 OpenGL will normalize the axis.

Interactive Viewing

 Interactive viewing is desired for 3D model display.

 Adjust the orientation of shape with UI

 FPS style : Changing the first person view

  Exploring the environment

 ArcBall (TrackBall) : Rotate the object at view center.

  Easier to view a single object in all direction

Euler Angles

 At most 75% of credit if you only implement
Euler Angles.

 Rotate about X,Y,Z axis respectively.
 Very easy to implement.
 Keep track of X,Y,Z angles.

glRotatef(angleX,1,0,0);

glRotatef(angleY,0,1,0);

glRotatef(angleZ,0,0,1);

drawObject();

gluUnProject(mouse_x, mouse_y, 0.0, modelview_matrix,
projection_matrix, viewport_matrix, &x, &y, &z)

Gyroscope

(From Wikipedia)

Euler Angles

 Problem : Gimbal Lock
 Occurs when two axes

are aligned
 Second and third

rotations have effect of
transforming earlier
rotations
 ex: Rot x, Rot y, Rot z
▪ If Rot y = 90 degrees,

Rot z == -Rot x

Arcball Interface

 Intuition : Make use of the mouse position to
control object orientation
 Rotate object about some axis based on mouse

movement

Arcball Interface

 Keep track a global rotation matrix Rg.
 Whenever there is a mouse movement,

create a new rotation Rn.
 Update global rotation matrix Rg = Rn*Rg.

 How to define Rn ?

Arcball Interface

 To define a rotation : axis & angle
 Think of orientation as a point on the unit hemi-

sphere
 How to rotate p1 to p2 ?

p2

p1

n

angle

n = p1Xp2

|n| = sin(angle)

angle = asin(|n|)

axis = n/|n|

Arcball Interface

 How to find a point on
sphere based on
normalized screen
coordinates ?

 Map a 2D point (x,y)
back to a unit sphere

 z = sqrt(1 – x*x – y*y)

(x,y,0)
sp(x,y,z)

Arcball Interface

 Summary:

 Get start/end mouse 2D position (glutMotion)

 Map them to 3D points v1,v2 on hemi-sphere

 Find rotation axis/angles from v1,v2

 Update object orientation with rotation axis/angle

▪ (Pre-multiply new rotation with current rotation)

Rotation About Any Axis

 Check lecture note :

 You can also call glRotate3f to generate it.

Rendering Accleration

 Calling glBegin/glEnd is not optimal.

 Many function calls

 Repeated vertices

 Data transfer

 Acceleration :

 Method 1: Display List

 Method 2: VertexArray

 Method 3: Vertex Buffer Object (VBO)

Display Lists

Method One

Display Lists

 A display list is a convenient and efficient way to
name and organize a set of OpenGL commands.

 glCallList(wheel_id);

 modelview transformation

 glCallList(wheel_id);

 modelview transformation

 glCallList(wheel_id);

Display Lists

 To optimize performance, an OpenGL display
list is a cache of commands rather than a
dynamic database.

 In other words, once a display list is created,

it can't be modified on the fly.

Display List

 A Display List is simply a group of OpenGL
commands and arguments

 Most OpenGL drivers compile and accelerate

Display Lists by
 storing all static data on video ram
 optimizing OpenGL commands execution
 Frustum & occlusion culling

 Small driver overhead
 No time expensive data transfer

Display List

 Usage : Create a new list
 Call glBegin/glEnd /glVertex to store commands in the

display list.
 glCallList to reuse a display list.

Red Book Sixth Edition :

Chapter 7.

glGenList

 glNewList

 glEndList

 glCallList

 …..

Vertex Arrays

Method Two

The Basic Idea

A

B

C

D

E

F G

H

0 0 0 0 0 1 1 0

A B C D E F G H A B B C F E F G

A D H E C H G D

Vertices Stored in an Array

Indices of Quads into the vertex array

1 1 0 0 0 1 0 0

1 1 1 1 1 1 1 0

Vertex G

Vertex Arrays

 Similar to conventional approach, but: One
driver call for all vertices

 small driver overhead

 Data resides in CPU memory.

 Easier to update

 Still transfering all vertices

 lot of transfer (CPU/AGP-bound bottleneck)

Vertex Arrays

 Usage : Enable client state for vertex array.

 Provide pointers to your veritces/faces in memory.

 Call glDrawElement to rendering everything at once.

Refer to Red Book for more

information

glEnableClientState

 glVertexPointer

 glColorPointer

 glDrawElements

 …..

Buffer Object

Method Three

Vertex Buffer Object (VBO)

 A vertex buffer object (VBO) is a powerful feature
that allows storing vertex data in video ram

Vertex Buffer Object (VBO)

 Very similar to vertex arrays
 VBOs hold geometry and state on the

graphics hardware

 Significant reduction in rendering time

 Provide mapping from application memory
to graphics memory

 Allows fast updates when geometry changes

Vertex Buffer Object

 glGenBuffers

 glBindBuffers

 glBufferData

 …..

 Usage : Allocate enough buffer space in video
memory.

 Maps buffer memory to represent vertex/indices data.
 Render as vertex arrays.

Refer to the Red Book for

more details

Summary

 Use Display Lists or Vertex Buffer Objects
to store static objects

 Vertex Arrays or dynamic Vertex Buffer for
deformable objects

 DrawElements is expensive

 draw as many Triangles per DrawElements as
possible

 Keep data transfer as small as possible

Q&A

