
CS411 Database Systems
Fall 2008

Final Exam Solutions

Problem 1 (15 points)

(1) False; (2) False; (3) False; (4) True; (5) False;
(6) True; (7) False; (8) True; (9) True; (10) True;
(11) False; (12) False; (13) False; (14) True; (15) True;

Problem 2 (12 points)

(i) It may be convenient to have the length in the record itself. The length field allows us to
avoid examining the record contents if all we need is to find the beginning of the next record
quickly.

(ii) (a) – record header: 12 bytes

– name field: 30 bytes. Since each field must start at a multiple of four, this field
actually takes 32 bytes.

– gender field: 1 byte. Since each field must start at a multiple of four, this field
actually takes 4 bytes.

– address field: 255 bytes + string’s endmarker = 256 bytes.

RecordLength = 12 + 32 + 4 + 256

(b) – block header: 40 bytes

– actual block length: 220 - 40

– record length: RecordLength

Maximum Number of Records = ⌊ActualBlockLength/RecordLength⌋

Problem 3 (10 points)

(a)

(b) B-tree index is great for both equality and range queries. However, hash table index is more
efficient for equality queries, but it cannot support range queries.

Problem 4 (12 points)

(i) Read R into main memory. Then, for each tuple t of S, find those tuples in memory with
which t joins, and output the joined tuples. Also mark as “used” all those tuples of R that
join with t. After S is exhausted, examine the tuples in main memory, and for each tuple r
that is not marked “used,” pad r with nulls and output the result.

(ii) We effectively have to perform two nested-loop joins of 500 and 250 blocks, respectively, using
101 blocks of memory. Such a join takes 250 + 500*250/100 = 1500 disk I/O’s, so two of
them takes 3000. To this number, we must add the cost of sorting the two relations, which
takes four disk I/O’s per block of the relations, or another 6000. The total disk I/O cost is
thus 9000.

1



(iii) To compute delta(R) using a “hybrid hash” approach, pick a number of buckets small enough
that one entire bucket plus one block for each of the other buckets will just fit in memory.
The number of buckets would be slightly larger than B(R)/M. On the first pass, keep all the
distinct tuples of the first bucket in main memory, and output them the first time they are
seen. On the second pass, do a one-pass distinct operation on each of the other buckets. The
total number of disk I/O’s will be one for M/B(R) of the data and three for the remaining
(B(R)-M)/B(R) of the data. Since the data requires B(R) blocks, the total number of disk
I/O’s is M + 3(B(R) - M) = 3B(R) - 2M, compared with 3B(R) for the standard approach.

Problem 5 (16 points)

(i) (a) Assume two relations R(a, b) = (1, 2) S(a, b) = (1, 3). We have:
πa(R ∪ S) = (1), (1), but πaR ∪ πaS = (1)

(b) Assume two relations R(a, b) = (1, 2) and S(a, b) = (1, 4). We have:
πa(R− S) = (1), but πaR− πaS = Ø

(ii) See Table 1.

(iii) (a) Use an index-scan using the nonclustering index on c. Since V(R,c) = 5000, only one
tuple should be retrieved. Filter the retrieved tuple for a=1 and b=3. The expected
disk I/O cost is 1.

(b) Use an index-scan using the nonclustering index on b. Since V(R,b) = 1000, 5 blocks
should be retrieved. Filter the retrieved blocks for a=1 and c<3. The expected disk I/O
cost is 5.

Range of k Pipeline or Materialize Algorithm for final join Total Disk I/O’s

k ≤ 80 Pipeline one-pass 46,000

80 < k ≤ 8000 Pipeline 80-bucket, two-pass 66,000 + 2k

8000 < k Materialize 100-bucket, two-pass 66,000 + 4k

Table 1: Costs of physical plans as a function of k.

Problem 6 (12 points)

(i) (a) Before event number 12, and after record number 11.

(b) Database: B ← 80; Log: <Abort V>.

(ii) Database: E ← 50,C ← 30,A← 10
Log: <Abort V>.

2



(iii) Database: B ← 21,D ← 41,A← 10, C ← 30
Log: <Abort T>.

Problem 7 (12 points)

(i) We can improve the throughput of a system by performing some tasks at CPU while doing
I/O activities. Also, we can reduce average waiting time if we can execute a short transaction
while executing a long transaction.

(ii) The dependency contains a circular loop, 1 → 3 → 2 → 1. Therefore, S is not conflict-
serializable.

(iii) If TS(T ) < WT (X), it means that a newer transaction T ′ has already written some value
on X. When we use a concurrency method with timestamps, we consider a serial schedule
where all the actions of each transaction are considered to be done at the starting time of
that transaction. Therefore, we must swap T ’s read action on X with T ′’s write action on the
same element X. However, this is a conflicting swap, and thus we cannot convert the actual
schedule to the serial schedule.

(iv) Transaction T1’s validation V1 succeeds because there is no validated transaction. Transaction
T2’s validation V2 also succeeds because WS(T1)∩RS(T2) = {A}∩{B, C} = φ and WS(T1)∩
WS(T2) = {A} ∩ {B} = φ. However, T3’s validation fails because WS(T2) ∩ WS(T3) =
{B} ∩ {B} = {B}.

Problem 8 (11 points)

(i) Transaction T1 wounds T2 holding a lock on element on B.

(ii) (0, 1, P ), (0, 2, P ), (2, 0, D), (1, 0, R), (0, 2, A), (0, 1, A)

(iii) If the last log record at site 1 is < Don′t commit T >, the coordinator may or may not have
received D message from site 1. If the coordinator has received the D message, it should
have reached the global decision to abort T . If the coordinator has not received the message
because of the failure of site 1, after a suitable timeout period, it will treat site 1 as if it had
sent D message. Therefore, site 1 knows that the coordinator would decide to abort T in
both cases, and thus figures out that it should abort T as well.

3


