CS411 Database Systems
 Fall 2007

Midterm Solution

Problem 1

(1) False; (2) True; (3) True; (4) False; (5) True;
(6) False; (7) False; (8) False; (9) False; (10) True;
(11) False; (12) False; (13) True; (14) False;

Problem 2

Figure 1: ER Diagram

Problem 3

Consider a relation $R(A, B, C, D, E)$, with given $F D$'s $A B \rightarrow C, B C \rightarrow D, C D \rightarrow E, D E \rightarrow A$.
(i) Determine all the keys of R.
(Hint: There are three keys and you don't not need to list superkeys that are not keys)
Answer: AB, BC, and BDE . Note that B must be in any key, since it doesn't appear on the right of any FD. That fact makes the search for keys fairly easy.
(ii) List which FDs violate 3NF if any.

None violate 3 NF , because all attributes are prime.
(iii) List which FDs violate BCNF if any.

Answer: $\mathrm{CD} \rightarrow \mathrm{E}$ and $\mathrm{DE} \rightarrow \mathrm{A}$ violate BCNF .
(iv) Decompose R using BCNF decomposition. Indicate your working and summarize your final set of relations.
Answer: Suppose we use $\mathrm{CD} \rightarrow \mathrm{E}$ to decompose. Since $\{C D\}^{+}=A C D E$, one of the schemes is $R 1(A, C, D, E)$ and the other is $R 2(B, C, D)$. The latter is in BCNF, since $B C$ is the only key, and $\mathrm{BC} \rightarrow \mathrm{D}$ the only projected FD. However, R1 is not in BCNF. For example, $\mathrm{DE} \rightarrow \mathrm{A}$ is a projected FD, but $\{D E\}^{+}=A D E$, so DE is not a superkey for R1. Thus, we decompose R1 into R3(A, D, E) and R4(C, D, E). The constituents of the decomposition are R2, R3, and R4.

Problem 4

(i) $\pi_{\text {Name }}\left(\right.$ Student $\bowtie\left(\rho_{\text {TeamName='BEE }}\right.$, ProjectTeam $\left.)\right)$
(ii) $\pi_{U I N}$ Student $-\pi_{U I N}$ ProjectTeam
(iii) $\pi_{\text {TeamName }}$ ProjectTeam $-\pi_{\text {TeamName }}\left(\right.$ ProjectTeam $\bowtie \sigma_{\text {Department } \neq}$ 'CS, Student $)$
(iv) $\pi_{\text {Name }}\left(\right.$ Student $\bowtie\left(\right.$ Midterm $-\pi_{U I N, G r a d e}\left(\right.$ Midterm $\bowtie_{\text {Grade }<\text { Grade } 1} \rho_{M 2(U I N 1, \text { Grade1) }}$ Midterm $\left.\left.)\right)\right)$

Problem 5

```
(i) SELECT Customer.cname
    FROM Buy, Customer, Book
    WHERE Customer.cid = Buy.cid AND Customer.state = 'Illinois' AND
        Buy.isbn = Book.isbn AND Buy.year = 2000
    GROUP BY Customer.cid
    Having SUM(Book.price) > 5000;
(ii)
CREATE VIEW Sales AS
SELECT Author.assn, Author.aname, COUNT(Buy.tid) AS count
        FROM Author, Book, Buy
        WHERE Buy.isbn = Book.isbn AND
            Book.isbn = Author.isbn AND
            Buy.year = 2006
        GROUP BY Author.assn;
SELECT Author.aname
FROM Sales
WHERE Sales.count = (SELECT MAX(Sales.count)
    FROM Sales);
```

```
(iii) CREATE VIEW FriendsOfBob AS
    SELECT Buy.cid AS cid
    FROM Buy
    WHERE Buy.cid <> 12345 AND
        Buy.isbn IN (SELECT Buy.isbn
        FROM Buy
        WHERE Buy.cid = 12345)
    GROUP BY Buy.cid
    HAVING COUNT(Buy.isbn) > 20;
(iv) SELECT Buy.isbn
    FROM FriendsOfBob, Buy
    WHERE FriendsOfBob.cid = Buy.cid AND Buy.isbn NOTIN
    (SELECT Buy.isbn
    FROM Buy
    WHERE Buy.cid = 12345);
```


Problem 6

(i) 1. RemoteLikes $(p, q) \leftarrow \operatorname{Likes}(p, q)$ AND NOT $\operatorname{Dislikes}(p, q)$
2. RemoteLikes $(p, q) \leftarrow \operatorname{RemoteLikes}(p, r)$ AND RemoteLikes (r, q) AND NOT $\operatorname{Dislikes}(p, q)$
(ii) There is only one IDB predicate, RemoteLikes, and there is no negative self-loop arc on it although there is a positive self-loop arc. Therefore, negation in rules in Problem 6(i) is stratified.

