
NetID:

CS411 Database Systems
Fall 2007

Department of Computer Science
University of Illinois at Urbana-Champaign

Final Examination
December 12, 2007

Time Limit: 180 minutes

• Print your name and NetID below. In addition, print your NetID in the upper right
corner of every page.

Name: NetID:

• Including this cover page, this exam booklet contains 17 pages. Check if you have
missing pages.

• The exam is closed book and closed notes. You are allowed to use scratch papers.
No calculators or other electronic devices are permitted. Any form of cheating on the
examination will result in a zero grade.

• Please write your solutions in the spaces provided on the exam. You may use the blank
areas and backs of the exam pages for scratch work.

• Please make your answers clear and succinct; you will lose credit for verbose, convo-
luted, or confusing answers. Simplicity does count!

• Each problem has different weight, as listed below– So, plan your time accordingly.
You should look through the entire exam before getting started, to plan your strategy.

Problem 1 2 3 4 5 6 7 8 Total

Points 15 10 10 14 17 12 12 10 100

Score

Grader

1

NetID:

Problem 1 (15 points) Basics
For each of the following statements, indicate whether it is TRUE or FALSE by circling your choice.
If you change your mind, cross out both responses and write “True” or “False.” You will get 1
point for each correct answer, 0 point for each incorrect answer.

(1) True False

Logical and physical addresses are both representations for the database address.

(2) True False

When a client requests a record that contains a BLOB (binary, large object), the database
server that receives the request should return the entire record at a time.

(3) True False

When an index covers many blocks, we may want to put a second-level index on the first-level
index that contains pointers to records. When we use multiple levels of indexes, the first-level
index must be sparse.

(4) True False

Secondary indexes are always dense.

(5) True False

In B-trees, we sometimes need to have overflow blocks.

(6) True False

Dynamic hash tables support range queries.

(7) True False

In linear hash tables, we sometimes have overflow blocks.

(8) True False

One-pass algorithms for set union of two relations R and S requires M main memory buffers
such that B(R) + B(S) ≤ M .

(9) True False

In algebraic laws, σC(R − S) = R − σC(S) holds.

(10) True False

Dynamic programming is a bottom-up method, where we consider only the best plan for each
subexpression of the logical-query plan.

(11) True False

In undo logging, it is not always possible to recover some consistent state of a database system
if the system crashes during recovery.

(12) True False

A scheduler based on the two-phase locking scheme always executes multiple transactions
with some serial schedule.

(13) True False

Two-phase locking prevents deadlocks.

2

NetID:

(14) True False

Concurrency control by timestamps is superior to that by locks if most transactions are
read-only.

(15) True False

ACR (avoids cascading rollback) schedules are always serializable.

3

NetID:

Problem 2 (10 points) Pointer Swizzling
Suppose that the important actions related to data storage take the following times, in some
arbitrary time units:

• On-demand swizzling of a pointer: 30;

• Automatic swizzling of pointers: 20 per pointer;

• Following a swizzled pointer: 1;

• Following an unswizzled pointer: 10.

(i) Suppose we design a pointer-swizzling control scheme like the following. At the beginning,
we automatically swizzle 30% of the pointers and leave the rest unswizzled. Once a pointer
is followed, we swizzle it by probability 0.5. If an unswizzled pointer has been followed twice,
we swizzle it. Suppose there are 200 pointers in our data. The number of times that they are
followed by a program is distributed according to the following histogram.

times of being followed 0 1 2 3

number of pointers 20 80 60 40

What’s the expected cost of this program in terms of pointer following? (6 points)

4

NetID:

(ii) A block in memory is said to be pinned if it cannot at the moment be written back to disk
safely. Explain in what situation a block could be pinned because of swizzled pointers and
describe how we should extend a translation table that maps database addresses to memory
addresses in order to unpin such blocks. (4 points)

5

NetID:

Problem 3 (10 points) Indexing
Consider the B-tree of d = 2 (i.e., each index node can hold at least d = 2 keys and at most 2d = 4
keys) shown in Figure 1.

50

8 18 32 40 73 85

1 2 5 6 8 10 18 27 32 39 41 45 52 58 73 80 91 99

Figure 1: B-tree of Problem 3

(a) What is the largest number of records that can be inserted into this tree (more nodes may
be created), while the height of the tree does not change. (3 points)

(b) show the steps in executing the following operation: Lookup all records in the range from 10
to 58 (including 10 and 58). (3 points)

6

NetID:

(c) Show the B+ tree that would result from deleting the data entry with key 91 from the original
tree. (4 points)

7

NetID:

Problem 4 (14 points) Query Execution

Consider two relations R(a, b) and S(b, c) with the following statistics:

T (R) = 10, 000, B(R) = 1, 000 (each block contains 10 tuples),
V (R, b) = 200 (number of distinct values of attribute b in R),

T (S) = 6, 000, B(S) = 1, 500 (each block contains 4 tuples),
V (S, b) = 100 (number of distinct values of attribute b in S),
V (S, c) = 20 (number of distinct values of attribute c in S) and c > 100.

Also, we assume the number of available memory blocks is M = 101.

Please answer the following questions:

(i) Estimate the number of tuples in σc=150(S) (2 points)

(ii) Estimate the number of tuples in R ⋊⋉ σc>25(S). (2 points)

(iii) Suppose we have a B-tree index available for attribute b of S. The tree has 3 levels, and each
node contains 4 keys– that is, there would be totally 100 keys in the 5 × 5 leaf nodes, where each
key would correspond to a distinct value of b in S. Assume each node of the index occupies one
block.

For simplicity, we assume the tuples with the same b value are stored consecutively in the disk but
may spread in different blocks. Please estimate the worst cost of executing the following query:
(the cost is measured by disk I/Os for accessing the index and the tuples). (3 points)

SELECT *
FROM S

WHERE b = 100 OR b = 1000

8

NetID:

(iv) Consider joining R and S using a block-based nested loop join (without using any index).
Suppose R is used as the outer loop. Estimate the cost. (3 points)

(v) Now suppose we want to use sort-join. Assuming that the number of tuples with the same b

value is not large, we aim to use the more efficient sort-based join approach:

1. Created sorted sublists of size M , using b as the sort key, for both R and S.

2. Bring the first block of each sublist into the memory buffer.

3. Repeatedly find the least b-value, and output the join of all tuples from R with all tuples
from S that share this common b-value. If the buffer for one of the sublist is exhausted, then
replenish it from disk.

Please estimate the cost (total disk I/Os) of applying this sort-join on R and S. Also, state the
requirement on the number of memory blocks M considering the maximum number of blocks K

for holding tuples of R and S with the same b value.

(4 points)

9

NetID:

Problem 5 (17 points) Query Optimization

Suppose we want to compute the following:

τb(R(a, b) ⋊⋉ S(b, c) ⋊⋉ T (c, d)), where τb specifies sorting on b.

That is, we want to join three relations R, S, and T , and sort the results on attribute b. Let us
make the following assumptions:

• First, for accessing each relation:

– R can be index scanned on attribute a or b, or table scanned.
– S can be index scanned only on b, or table scanned.
– T can only be table scanned.

We assume the index is based on B-tree. Accessing a relation using index scan on an attribute
will produce records sorted by that attribute, while table scan does not give any guaranteed
output order for the records.

• Second, for joining two relations, we have the following two choices:

– merge-join can be used if the two relations are already sorted on the join attribute. It
will simply join the two sorted relations using the merge part of the simple sort-based
join algorithm, and the output would be sorted.

– nested-loop join can be used in any case. For simplicity, we assume the block-based
nested-loop join is used and the relation produced in the left sub-tree of a query plan
will be used as the outer loop.

(i) Please draw two logical query plans (without concerning the physical access and join methods)
that are not “left-deep.” (3 points)

10

NetID:

(ii) Now, consider the following two logical query plans (regardless of what your answer is for (i)),
where we also fill in some physical access and join methods. Note we show only the join part (and
not sorting) of the query.

⋊⋉

⋊⋉

R S

T
��

��
��

��
��

�

??
??

??
??

??

��
��

��
��

��

??
??

??
??

??
?

(table scan)

(index scan on b) (index scan on b)

(merge-join)

()

⋊⋉

⋊⋉

S T

R
��

��
��

��
��

�

??
??

??
??

??

��
��

��
��

��
�

??
??

??
??

??

()

() (table scan)

()

()

Suppose we would like to avoid applying an additional sort on the final output relation, while still
achieve the desired sorted result (i.e., τb). Please help fill appropriate access and join methods into
the brackets in the above two query plans. (5 points)

11

NetID:

(iii) An interesting order holds for a join result if it is sorted in an order that will be useful for
the operations in the higher part of the expression tree– for example, sorted on the attribute(s)
specified in a sort (τ) operator at the root, or the join attribute(s) of a later join.

For our problem, we want the final result sorted on attribute b. Consider the following three plans
for R ⋊⋉ S. Please circle “yes” if the plan produces an interesting order, and “no” if not. (3 points)

Plan R ⋊⋉ S interesting order?

Plan A (table-scan R) nested-loop-join (table-scan S) yes / no
Plan B (index-scan R on b) merge-join (index-scan S on b) yes / no
Plan C (index-scan R on b) nested-loop-join (table-scan S) yes / no

Please briefly explain your choices. (3 points)

(iv) For query optimization, we use an enhanced method that improves upon the dynamic program-
ming approach: It will keep for each subexpression the plan of lowest cost (as dynamic programming
does). In addition, it wll also keep the one with lowest cost from those plans that produce an in-
teresting order.

The table below lists the estimated costs for the three plans (see the table in (iii)). Which plans
would be kept when considering the subexpression R ⋊⋉ S using this enhanced method? Please
circle “yes” if the plan will be kept, and “no” if it will be pruned. (You may need to refer to the
results, the interesting order of each plan, in (iii) to make the decisions)

Plan estimated cost keep?

Plan A 2000 yes / no
Plan B 3000 yes / no
Plan C 4000 yes / no

Please briefly explain your choices. (3 points)

12

NetID:

Problem 6 (12 points) Recovery
Consider a database with data items {A, B, C, D}. The system uses an undo/redo scheme and has
the following logs. Note that an entry <T, X, old, new> means transaction T changes the value of
X from old to new. We consider recovery using this undo/redo log.

1. <T2 start>
2. <T2, B, 10, 11>

3. <T1 start>
4. <T2 commit>
5. <T1, A, 20, 21>
6. <Checkpoint start; Active= {T1}>
7. <T3 start>
8. <T3, C, 30, 31>

9. <T4 start>
10. <T4, B, 40, 41>

11. <T4 commit>
12. <Checkpoint end>

13. <T3, D, 50, 51>
14. <Checkpoint start; Active= {T1, T3}>
15. <T1, C, 31, 32>

16. <T5 start>
17. <T5, D, 51, 52>
18. <T3 commit>
19. <T6 start>
20. <T6, C, 32, 33>

21. <T5 commit>
22. System failed

(i) List all possible values of A, B, C and D. That is, what are the possible data values on the
disk at the point of failure (after action 21)? (3 points)

(ii) During recovery, what are the transactions that need to be undone? (3 points)

13

NetID:

(iii) During recovery, what are the transactions that need to be redone? (3 points)

(iv) What are the values of A, B, C, D after recovery? Explain why? (3 points)

14

NetID:

Problem 7 (12 points) Concurrency control
Answer the following questions:

(i) Briefly explain one advantage of nonquiescent checkpointing compared to quiescent check-
pointing. (3 points)

(ii) Consider the schedule S: w1(X); w3(X); w2(X); w4(X); r4(Y); w1(Y). Draw the precedence
graph for the schedule S. Is it conflict-serializable? Explain why. (3 points)

(iii) Consider the schedule S: r1(X); r2(Y); w2(X); w1(Y). Does deadlock occur using the two-
phase locking rule? Explain why. (3 points)

15

NetID:

(iv) In the following sequences of events, Ri(X) means that transaction Ti starts and its read set
is the list of database elements X. Also, Vi means Ti attempts to validate and Wi(X) means
that Ti finishes, and its write set was X. Tell what happens when the following sequence of
events is processed by a validation-based scheduler. (3 points)

R1(A, B); R2(B, C); V1; R3(C, D); V3; W1(A); V2; W2(A); W3(D)

16

NetID:

Problem 8 (10 points) Deadlocks
Answer the following questions:

(i) For the sequence of actions below, assume that locks are requested immediately before each
read and write action. However, if a transaction is already holding a lock on a database
element, it does not need to obtain that lock again to execute another action on that element.
Also, unlocks occur immediately after the final action that a transaction executes. Tell which
locking actions are denied, and whether a deadlock occurs, by drawing a wait-for graph. (5
points)

r1(A); r2(B); w1(C); w2(D); r3(C); w1(B); w4(D); w2(A);

(ii) We observed in our study of lock-based schedules that there are several reasons why transac-
tions that obtain locks could deadlock. Can a timestamp-based scheduler using the commit
bit C(X) have a deadlock? If you beleive that the scheduler does not have any deadlock,
prove that. Otherwise, describe a situation where a deadlock occurs. (Hint: consider the case
where two transactions T1 and T2 run while accessing two database elements A and B.) (5
points)

17

