(CS411 Database Systems
Fall 2007

Final Exam Solutions

Problem 1 (15 points)

(1) True; (2) False; (3) False; (4) True; (5) False;
(6) False; (7) True; (8) False; (9) False; (10) True;
(11) False; (12) False; (13) False; (14) True; (15) False;

Problem 2 (10 points)

The distribution of pointers are like the following.

times of being followed 0 1 2 3
Total 20 80 60 40
Automatically swizzled 6 24 18 12

On-demand swizzled after 1st access N/A 28 21 14
On-demand swizzled after 2nd access N/A N/A 21 14

e For the pointers that are never followed: subtotal is 120
— cost of automatic swizzling of 30%: 6 x 20 = 120
e For the pointers that are followed only once: subtotal is 1904

— cost of automatic swizzling of 30%: 24 x 20 = 480

cost of following the swizzled pointers: 24 x 1 = 24

cost of following the unswizzled pointers: (80 — 24) x 10 = 560

— cost of on-demand swizzling: 28 x 30 = 840
e For the pointers that are followed twice: subtotal is 2307

— cost of automatic swizzling of 30%: 18 x 20 = 360
— cost of following the swizzled pointers: 18 x 2 + 21 x 1 =57

cost of following the unswizzled pointers: (21 + 21 x 2) x 10 = 630
— cost of on-demand swizzling: (21 + 21) x 30 = 1260

e For the pointers that are followed three times: subtotal is 1578

cost of automatic swizzling of 30%: 12 x 20 = 240
— cost of following the swizzled pointers: 12 x 3+ 14 x 2+ 14 x 1 =78

cost of following the unswizzled pointers: (14 + 14 x 2) x 10 = 420
— cost of on-demand swizzling: (14 + 14) x 30 = 840

The total expected cost is 120 + 1904 + 2307 + 1578 = 5909.

(ii) Solution: In such situation a block could be pinned because of swizzled pointers: Suppose
a block Bi has within it a swizzled pointer to some data item in block Bs, and we move block Bs
back to disk. Now, should we follow the pointer in By, it will lead us to the buffer, which no longer
holds Bs. In effect, the pointer has become dangling.

To unpin a block that is pinned because of swizzled pointers from outside, we must ”unswizzle”
any pointers to it. Consequently, the translation table must record, for each database address
whose data item is in memory, the places in memory where swizzled pointers to that item exist.
Two possible approaches are:

1. Keep the list of references to a memory address as a linked list attached to the entry for that
address in the translation table.

2. If memory addresses are significantly shorter than database addresses, we can create the linked
list in the space used for the pointers themselves. That is, each space used for a database
pointer is replaced by (a) The swizzled pointer, and (b) Another pointer that forms part of a
linked list of all occurrences of this pointer.

Problem 3 (10 points)

(a) With height unchanged, this tree can hold at most 5 x 5 x 4 = 100 records. The number of
current records is 18. Therefore, this tree can accommodate 82 more records.

(b) 10 < 50 — 1st pointer, 8 < 10 < 18 — 2nd pointer, find 10 in the 2nd key. get records with
keys 10, 18,27,32,39,41,45,52,58 by following chains.

(c) See Figure 1.

s [18]3] so[n]]

Qi‘ '/\H\
1[2]s]s s [w0]] s]27]] BIE afas|] BIE 73 [80 [99]
INNEANERE NNEE INERE ANERE AN e NN
vVYy vy vy vy vy vy vVYy

Figure 1: Solution for Problem 4(c)

Problem 4 (14 points)

(i) 6,000/20 = 300
(ii) T(R)T(S)/max(V (R,b),V(S,b)) = 10,000 x 6,000/200 = 300, 000

(iii) Accessing index to find b = 100 needs 3 blocks
Accessing index to find b = 1000 needs 3 blocks

The tuples with b = 100 are estimated as T'(S)/V(R,b) = 60. These will occupy at best 15
blocks but at worst 16 blocks.

Similarly, tuples for b = 1000 will occupy at worst 16 blocks.

So, the worst cost of this query should be 3 + 3 + 16 + 16=38 blocks.

(iv) We shall use 100 blocks to buffer R. Thus, for each iteration, we do 100 disk I/O’s to read
the chunk of R and read S entirely in the second loop. So, the total number of disk I/O’s is
(1,000/100)(100+1,500)=16,000

(v) The approach needs 3B(R) + 3B(S) = 75,000. We have 25 subsorted lists for relations R
and S. Therefore, K < M — 25 must holds.

Problem 5 (17 points)

(nested-loop join) M

N

(merge-join) T

/ \ (table scan)

R S
(index scan on b) (index scan on b)

(merge-join) M

N

(nest-loop join) R

\ (index scan on b)

T
(ii) (index scan on b) (table scan)

There may be several answers.

(iii)

Plan ‘ RXS ‘ interesting order?
Plan A (table-scan R) nested-loop-join (table-scan S) no
Plan B | (index-scan R on b) merge-join (index-scan S on b) yes
Plan C | (index-scan R on b) nested-loop-join (table-scan S) yes

Plan A: (table-scan R), (table-scan S) produce no order, and nested-loop-join does not pro-
duce any sorted order.

Plan B: (index-scan R on b) produces tuples sorted on b, (index-scan S on b) produces tuples
sorted on b, and merge-join will produce a sorted output on b: Thus, it will produce an
interesting order.

Plan C: (index-scan R on b) produces tuples sorted on b, and using nested-loop-join with
a sorted relation as the outer loop will produce a sorted output: Thus, it will produce an
interesting order.

Plan ‘estimated cost | keep?

Plan A 2000 yes
Plan B 3000 yes
Plan C 4000 no

Plan A: The plan has the smallest cost, so it will be kept.

Plan B: It produces an interesting order, although does not have the smallest cost, so will be
kept.

Plan C: Although it produces an interesting order, its cost is higher than Plan B, so this plan
won’t be kept.

Problem 6 (12 points)

(i) A= 21, B= 11 or 41, C = 30 or 31 or 32 or 33, D = 50, 51, 52

(iii) T3, T4, T5

)
(ii) T1, T6.
)
(iv) A=20B=41C=31D =52
A= 20 because T1 is redone.
B= 41 because T4 is redone.

C= 31 because both T1 and T6 are undone and T3 is redone.
D = 52 because T5 is redone.

Problem 7 (12 points)

Pro

Answer the following questions:

(i) We do not need to shut down the system while the checkpointing is being made, so new

transactions enter the system during checkpointing.
No, it is not since the graph has cycle.

Yes, deadlock occurs with such an interleaving of the actions of these transactions. 7T; can
gain read lock on X and 75 can gain read lock on Y, but 7, cannot gain write lock on X
because it has conflict with read lock of transaction 77, so T has to wait. Similarly, 77 cannot
gain write lock on Y due to the conflict of read lock of the transaction 7. So, T5 cannot
proceed as well and they will wait forever.

As T7 is the first to validate, there is nothing to check; 77 validates successfully. T3 validates
next. The only other validated transaction is 77, and 77 has not yet finished. Thus, both the
read- and write-sets of T3 must be compared with the write-set of T. However, T} writes only
A, and T3 neither reads nor writes A, so T3’s validation succeeds. Last, T5 validates. Both T3
and T3 finish after 75 started, so we must compare the read-set of T with the write-sets of
both 77 and T3. In addition, since 73 has not finished yet when 75 is validating, the write-set
of To must be compared with the write set of T5. However, there is no common element in
the two sets. Thus, 15 can also validates.

I3
I
Iy

(
(
(
(

(

C
B
D

i)
)
)
)

blem 8 (10 points)

denied (C locked by 1)
denied (B locked by 2)
denied (D locked by 2)

l2(A) denied (A locked by 1)

wait-for graph is:

l=—2

|

3

|

4

Yes, a deadlock occurs, because of a cycle between 1 and 2 in the wait-for graph.

(i)

Yes, it can have a deadlock.

example:
T1 starts
T2 starts
T1 reads A
T1 writes A

T2 writes B

T1 writes B (result: T1 wait for T2 to commit or abort)
T2 reads A (result: T2 wait for T1 to commit or abort)
deadlock occurs

