NetID:

CS411 Database Systems
Fall 2004, Prof. Chang

Department of Computer Science
University of Illinois at Urbana-Champaign

Final Examination
December 17, 2004
Time Limit: 180 minutes

Print your name and NetID below. In addition, print your NetID in the upper right
corner of every page.

Name: NetID:

Including this cover page, this exam booklet contains 11 pages. Check if you have
missing pages.

The exam is closed book and closed notes. You are allowed to use scratch papers.
No calculators or other electronic devices are permitted. Any form of cheating on the
examination will result in a zero grade.

Please write your solutions in the spaces provided on the exam. You may use the blank
areas and backs of the exam pages for scratch work.

Please make your answers clear and succinct; you will lose credit for verbose, convo-
luted, or confusing answers. Simplicity does count!

Each problem has different weight, as listed below— So, plan your time accordingly.
You should look through the entire exam before getting started, to plan your strategy.

Problem 1 2 3 4 5 6 7 8 Total
Points 12 18 8 9 10 10 19 14 100
Score

Grader

NetID:

Problem 1 (12 points) Misc. Concepts

For each of the following statements, indicate whether it is TRUFE or FALSFE by circling your choice.
You will get I point for each correct answer, -0.5 point for each incorrect answer, and 0 point for
each answer left blank.

(1)

(®)

9)

(10)

(11)

(12)

True False
The LRU buffer replacement algorithm should not be used for certain query operations, such
as nested-loop join.

True False
For relation R(A, B, C, D), if AB — C and C — D, then {4, B} is a key.

True False

To process join operation R x S, we can choose any join methods: nested-loop, index, sort-
merge, hash, or hybrid— The only difference is their costs.

True False

Given an SQL query, there are often multiple ways of writing it in relational algebra.

True False

For the “ACID” properties of transactions, the “I” stands for idempotency— that is, the
multiple executions of the same transaction should result in the same correct effect.

True False

If a schema is in 3NF, then it must also be in BCNF.

True False

B-Tree was invented by Dr. Rudolf Bayer, an alumnus of the computer science department
of UIUC.

True False

If a pointer is very likely to be followed for many times, then it will pay off to perform
automatic swizzling.

True False

An RDBMS performs its own buffer management, for not only efficiency but also correctness—
because it needs to impose certain ordering in buffer replacement for transaction processing.

True False

For disk latency, seek time refers to the time for the head to find the desired sector— i.e., for
the disk to rotate so the first of the sectors containing the desired data reaches the head.

True False
From A — B, we can derive AC — B(C, which further leads to A — BC.

True False

For building a database application, we often write the application mainly in some “host
language,” which interacts with a database for manipulating data. The different ways of
operations between the host language and the underlying database, as many have observed,
are called impedance mismatch.

NetID:

Problem 2 (18 points) Short Answer Questions

For each of the following questions, write your answer in the given space. You will get 2 points for
each correct answer.

(1)

Answer:
Consider relation R(A, B) and S(B, C), where T'(R) = 200 and T'(S) = 100, and B is a key
for R. What is the estimate for T'(Rx.S)?

Answer:
Consider relation R(A, B, C, D) with A — B and C' — D. What is the BCNF decomposition?

Answer:
Write the following query in relational algebra, for relations R(a, b) and S(c, d):
select a, d from R, S where R.a > 10 and R.b = S.c.

Answer:
Write the following relation algebra expression in SQL, for relations R(a, b, ¢) and S(a, b,

€): Tq,p(Tq > 5R) =Ty pS

Answer:
Consider a B+-tree with n = 100 over a relation with 1 million records. What is the number
of nodes in the tree that we have to examine when searching for a record?

Answer:
Pointers (or addresses) are often used in databases. Give one example of when pointers are
used.

Answer:
For relation R(A, B, C), suppose AB — C and C — B. List all normal forms (if any) that
R is in. You only need to consider 3NF, 4NF, and BCNF.

Answer:
For relation Student(sid, name, dept), suppose dept can be one of {cs, ee, ce, me, chemistry}.
If T'(Student) = 1000, then what is the size estimate of T dept = csStudent?

Answer:
Rewrite R xg S using only the basic relational algebra operators.

NetID:

Problem 3 (8 points) Schema Decomposition

We perform decomposition to normalize an original schema to be of certain normal forms. For such
a decomposition to be “equivalent” to the original schema, it is desirable to be lossless.

To study this concept, let’s consider an original schema R(A, B, C). Suppose we decompose R into
R1(A, B) and R2(4, O).

(a) Is this decomposition always lossless? Answer yes or no and briefly explain why. (4 points)

(b) Give an example instance of R (i.e., an example table with several tuples) and demonstrate
its decomposition, to support your answer in (a). (4 points)

NetID:

Problem 4 (9 points) Query Languages

Consider relation Scores(name, exam, score), which records the score of a student in an examination

(either “midterm” or “final”); for example:

name exam score
Betty | midterm | 85
Alex | midterm | 57
Alex final 90
Betty final 78

(a) Write a query, in relational algebra, to return the final-exam score of Alex. (2 points)

(b) Write a query, in relational algebra, to return the names of those students who score higher
in the final exam than in the midterm exam. (3 points)

(b) Write a query, in SQL, to return the “count” distribution of scores for the midterm exam,
in descending order of score. That is, we want to list each score along with the number of
students with that score, in the midterm exam. For example, the output may look like the
following: (4 points)

score | count

85 6
82 5
78 8

NetID:

Problem 5 (10 points) Indexing: B+tree

Consider constructing a B+tree of order 3 (i.e., n = 3).

(a) Show the resulting tree after inserting keys 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, in this
order. (4 points)

(b) Is it possible, with the same set of keys, to construct a “shorter” tree— i.e., one that has a
smaller height? If no, explain why not. If yes, show an order of inserting the keys and the
resulting tree. (6 points)

NetID:

Problem 6 (10 points) Query Processing

We wish to join relations R(a, b), S(b, ¢), and T'(c, d), i.e., to produce R xS x T. As our assump-
tions:

e Each relation holds B,, Bs, B; blocks of data respectively.
e The memory buffer for query processing has M blocks.

e R is already sorted by R.b.

(a) If we want to minimize memory requirement for processing this query, what is the minimal
value of M? Describe a processing strategy that results in this minimal requirement. (4
points)

Note: In counting the memory requirement, as usual, we do not include the buffer space for
writing the final output, i.e., tuples of RxSxT. All other required space should be included.

(b) To contrast, suppose we want to process with the following strategy. What is the memory
requirement M? That is, you will derive an inequality condition in terms of M, B,, B, and
By, under which the following procedure can be carried out. (6 points)

1. Perform the first phase of two-phase multiway merge sort on S. That is, as many times
as necessary, we load the buffer with as many blocks from S as possible, sort the tuples
in memory, and write out the sorted sublist. At the end of this step, S'is stored as several
sorted sublist (or “runs”) on the disk. (We do not perform the second phase now.)

2. Read T entirely into the buffer, using as many blocks as necessary.

3. Merge R and the sorted sublists of § to produce R xS, and compare each of the resulting
tuple with 7' (already in memory) to produce (R x.S) x 7. (As usual, any output tuple
of the overall result is stored in an output buffer, which is not part of M.)

NetID:

Problem 7 (19 points) Query Optimization

Consider the following query that joins Student(sid, sname, sdept), Enrollment(sid, cid), Courses(cid,
ctitle, iid), Instructor(iid, iname, iaddr).

select sname, ctitle, iname
from Student S, Enrollment E, Course C, Instructor I
where join-conditions AND selection-conditions

In the where-clause, we have the following conditions:

e The join-conditions specify how the relations are joined. In this query, they are fixed to natural
joins, i.e.: S.sid = FE.sid AND FE.cid = C.cid AND C.iid = I.uid.

e The selection-conditions are of the form ¢; AND ¢ AND --- AND ¢,, where each ¢; is a
selection condition on some relation, e.g., S.sdept = “CS” or Liaddr="1234SC".

In this question, we are to consider that, although the join conditions remain the same, different
scenarios with different selection conditions may need different join ordering. For our purpose, we
consider the following join orders for processing SxExCXI:

o JI: ((S ®E) xC) xI
o J2: (I xC) XE) xS
o J3: (S XE) x(C ~I)

(a) We have only given three example orders in the above. If we want to consider all possibilities,
how many different orders are there for processing S}xEXCXI? (6 points)

Note, to simplify, let’s assume that join orders are symmetric— i.e., A X B is equivalent to B
x A. For instance, we consider J1 and I x ((S XE) xC) as the same order.

NetID:

(b) In practice, an optimizer often does not consider all possibilities. Suppose we only consider
left-deep join ordering— Then, in the entire space just described in (a), how many join orders
are left-deep? (4 points)

(¢) Give an example scenario, for which J3 will clearly be the best choice. First, describe your
scenario by specifying what the selection-conditions are, and explain why. (J points) Second,
give a complete query plan (in terms of relational algebra expression, or a query tree) for your

query. (4 points)

NetID:

Problem 8 (14 points) Failure Recovery

Consider the following UNDO logging.
Action ID Action

1
2
3

© oo N O

11
12
13
14
15
16
17

(START T1)
T1, A, 10)
START T2)
T1, B, 10)
COMMIT T'1)
T2, B, 10)
COMMIT T2)
START T3)
T3, A, 10)

(

(

(

(

(

(

(

(

(START T4)
(T3, B, 20)
(COMMIT T3)
(T4, C, 10)
(START T5)
(COMMIT T4)
(T5, D, 10)
(

COMMIT T5)

(a) We want to see when “dirty data” can be flushed to disk— i.e., what time to perform

Output(X) for data X (e.g., Output(A4), Output(B), etc.).

Suppose we want to perform

such “output” as late as possible. Insert these outputs on the figure to suggest their timing.

(3 points)

(b) Suppose we want to start checkpointing right after Action 4: First, show on the figure this
start checkpointing log record. (2 points) Then, show on the figure the end checkpointing log

record. (3 points)

10

NetID:

(c) Continue from (b). Suppose the system crashes after Action 15. How far back in the log must
we look to find all actions that need to be undone? (8 points)

(d) Now, suppose this system is actually a redo log. To contrast with (a), if you still want to
perform “output” (e.g., Output(A), Output(B), etc.) as late as possible. When should such
output be done? (3 points) You can show on the figure for the timing, but you should separate
and distinguish your answer from that of (a).

11

