CS411 Database Systems
 Fall 2004, Prof. Chang

Department of Computer Science
University of Illinois at Urbana-Champaign
Final Examination
December 17, 2004
Solution
Problem 1 (12 points) Misc. Concepts
(1) True
(2) True
(3) False
(4) True
(5) False
(6) False
(7) False
(8) True
(9) True
(10) False
(11) False
(12) True

Problem 2 (18 points) Short Answer Questions
(1) 100
(2) $A B C D C A$
(3) $\pi_{a, d}\left(\sigma_{a>10}\left(R \bowtie_{b=c} S\right)\right)$
(4) (SELECT a, b FROM R WHERE $a>5$)

EXCEPT (SELECT a, b FROM S)
(5) 3 nodes
(6) Index, repeating fields, and so on
(7) 3 NF
(8) 200
(9) $\sigma_{\theta}(R \times S)$

Problem 3 (8 points) Schema Decomposition

(a) No. Unless $A \rightarrow B$ or $A \rightarrow C$ is satisfied in $R, R 1 \bowtie R 2$ may generate entries that do not belong to R.
(b) See figure 1.

Figure 1: Problem 3.(b)

Problem 4 (9 points) Query Languages

(a) $\pi_{\text {score }}\left(\sigma_{\text {name }}="\right.$ Alex" and exam $=" f$ inal $"($ Scores $\left.)\right)$
(b) $\pi_{\text {name }}\left(\sigma_{\text {M.score }}<\right.$ F.score $\left(\left(\rho_{M}(\right.\right.$ Scores $\left.)\right) \bowtie_{M . n a m e ~}=F$. name $\left(\rho_{F}(\right.$ Scores $\left.\left.\left.)\right)\right)\right)$
(c) SELECT score, COUNT(*) FROM Scores WHERE exam = "midterm" GROUP BY score ORDER BY score

Problem 5 (10 points) Indexing: B+ tree

(a) See figure 2.
(b) Yes. We can change ordering so that more leaf nodes are full.

For example, 102040507080306090100
See figure 3.

Problem 6 (10 points) Query Processing

(a) $\mathrm{M}=3$

Need one block to read one block of relation R into memory buffer.
Need one block to read one block of relation S into memory buffer.
Need one block to hold intermediate result of $R \bowtie S$ to write to disk.

Figure 2: Problem 5.(a)

Figure 3: Problem 5.(b)
(b) 1. $B_{s}<M^{2}$

There are B_{s} / M runs after the first phase. In the second phase, we are going to use one block for each sorted sublist and another block for output.
2. B_{t}

This is the number of blocks of T.
3. $1+B_{s} / M+B_{t} \leq M$

We need only one block for reading R since we have already sorted $R . b, B_{s} / M$ blocks for reading the sorted sublists of S, B_{t} blocks for T.

Problem 7 (19 points) Query Optimization

(a) 15

The total number of tree shapes for 4 relations is 5 as figure 4 . But, because we assume that join orders are symmetric, the tree shapes (b), (d), and (e) in figure 4 are same as the tree shapes (a). So, we only consider shape (a) and (c).
Shape (a) - left deep tree: ${ }_{4} C_{2} \times 2=12$
Shape (c) - busy tree: ${ }_{4} C_{2} / 2=3$

(a)

(b)

(c)

(d)

(e)

Figure 4: Problem 7
(b) 12
(c) 1. $E . c i d=" \operatorname{cs411"}$ AND C.cid=" $\operatorname{cs411"}$

To reduce the size of the intermediate results of the two joins.
2. $\pi_{\text {sname, }}$ ctitle, iname $\left(\left(\sigma_{E . c i d=" c s 411 "}(S \bowtie E)\right) \bowtie\left(\sigma_{C . c i d=" c s 411 "}(C \bowtie I)\right)\right)$

Problem 8 (14 points) Failure Recovery

(a) Output A, Output B before Action 5.(for T1)

Output B before Action 7.(for T2)
Output A, Output B before Action 12.(for T3)
Output C before Action 15.(for T4)
Output D before Action 17.(for T5)
(b) 1. Between Action 4 and 5, <START Checkpoint(T1, T2) $>$
2. Between Action 7 and $8,<$ END Checkpoint $>$
(c) We need to backtrack to $<$ START Checkpoint (T1, T2) $>$
(d) Output A, Output B, Output C, Output D after Action 17 .

