1 Closure Properties # 1.1 Decidable Languages #### **Boolean Operators** **Proposition 1.** Decidable languages are closed under union, intersection, and complementation. Proof. Given TMs M_1 , M_2 that decide languages L_1 , and L_2 - A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts. (Similarly for intersection.) - A TM that decides $\overline{L_1}$: On input x, run M_1 on x, and accept if M_1 rejects, and reject if M_1 accepts. #### **Regular Operators** **Proposition 2.** Decidable languages are closed under concatenation and Kleene Closure. *Proof.* Given TMs M_1 and M_2 that decide languages L_1 and L_2 . - A TM to decide L_1L_2 : On input x, for each of the |x|+1 ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject. - A TM to decide L_1^* : On input x, if $x = \epsilon$ accept. Else, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \dots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject. #### **Inverse Homomorphisms** **Proposition 3.** Decidable languages are closed under inverse homomorphisms. *Proof.* Given TM M_1 that decides L_1 , a TM to decide $h^{-1}(L_1)$ is: On input x, compute h(x) and run M_1 on h(x); accept iff M_1 accepts. #### Homomorphisms Proposition 4. Decidable languages are not closed under homomorphism *Proof.* We will show a decidable language L and a homomorphism h such that h(L) is undecidable • Let $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$, and y encodes an integer n such that the TM M on input w will halt in n steps $\}$ - L is decidable: can simply simulate M on input w for n steps - Consider homomorphism $h: h(0) = 0, h(1) = 1, h(a) = h(b) = \epsilon$. - h(L) = HALT which is undecidable. #### 1.2 Recursively Enumerable Languages ### **Boolean Operators** **Proposition 5.** R.E. languages are closed under union, and intersection. *Proof.* Given TMs M_1 , M_2 that recognize languages L_1 , L_2 • A TM that recognizes $L_1 \cup L_2$: on input x, run M_1 and M_2 on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation) ## Complementation **Proposition 6.** R.E. languages are not closed under complementation. *Proof.* A_{TM} is r.e. but $\overline{A_{\text{TM}}}$ is not. #### **Regular Operations** **Proposition 7.** R.E languages are closed under concatenation and Kleene closure. *Proof.* Given TMs M_1 and M_2 recognizing L_1 and L_2 - A TM to recognize L_1L_2 : On input x, do in parallel, for each of the |x| + 1 ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject. - A TM to recognize L_1^* : On input x, if $x = \epsilon$ accept. Else, do in parallel, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \dots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject. #### Homomorphisms **Proposition 8.** R.E. languages are closed under both inverse homomorphisms and homomorphisms. *Proof.* Let TM M_1 recognize L_1 . - A TM to recognize $h^{-1}(L_1)$:On input x, compute h(x) and run M_1 on h(x); accept iff M_1 accepts. - A TM to recognize $h(L_1)$: On input x, start going through all strings w, and if h(w) = x, start executing M_1 on w, using dovetailing to interleave with other executions of M_1 . Accept if any of the executions accepts.