1 Undecidability

Undecidability

Definition 1. A language L is undecidable if L is not decidable. Thus, there is no Turing machine M that halts on every input and L(M) = L.

- This means that either L is not recursively enumerable. That is there is no turing machine M such that L(M) = L, or
- L is recursively enumerable but not decidable. That is, any Turing machine M such that L(M) = L, M does not halt on some inputs.

Big Picture

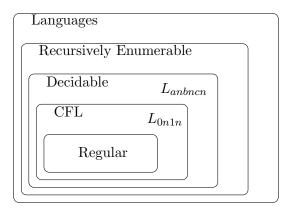


Figure 1: Relationship between classes of Languages

1.1 Diagonalization

The Diagonal Language

Definition 2. Define $L_d = \{\langle M \rangle \mid \langle M \rangle \notin \mathbf{L}(M)\}$. Thus, L_d is the collection of Turing machines (programs) M such that M does not halt and accept when given itself as input.

A non-Recursively Enumerable Language

Diagonalization: Cantor

Proposition 3. L_d is not recursively enumerable.

Proof. Recall that,

- Inputs are strings over $\{0,1\}$
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine
- In what follows, we will denote the *i*th binary string (in lexicographic order) as the number i. Thus, we can say $j \in \mathbf{L}(i)$, which means that the Turing machine corresponding to *i*th binary string accepts the *j*th binary string.
- We can organize all programs and inputs as a (infinite) matrix, where the (i, j)th entry is Y Inputs \longrightarrow

• Suppose L_d is recognized by a Turing machine, which is the jth binary string. i.e., $L_d = \mathbf{L}(j)$. But $j \in L_d$ iff $j \notin \mathbf{L}(j)$!

Acceptor for L_d ?

Consider the following program

```
On input \langle M \rangle  \text{Run program } M \text{ on } \langle M \rangle   \text{Output ''yes'' if } M \text{ does not accept } \langle M \rangle   \text{Output ''no'' if } M \text{ accepts } \langle M \rangle
```

The above program does not recognize L_d because it may never output "yes" if M does not halt on $\langle M \rangle$.

Models for Decidable Languages

Question

Is there a machine model such that

- all programs in the model halt on all inputs, and
- for each problem decidable by a TM, there is a program in the model that decides it?

Answer

There is no such model! Suppose there is a programming language in which all programs always halt. Programs in this language can be described by binary strings, and can be simulated by TMs. Consider the Turing Machine M_d

```
On input \langle M \rangle Run program M on \langle M \rangle Output ''yes'' if M does not accept \langle M \rangle Output ''no'' if M accepts \langle M \rangle
```

 M_d always halts and solves a problem not solved by any program in our language! Inability to halt is essential to capture all computation.

1.2 The Universal Language

Recursively Enumerable but not Decidable

- L_d not recursively enumerable, and therefore not decidable. Are there languages that are recursively enumerable but not decidable?
- Yes, $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Proposition 4. A_{TM} is r.e. but not decidable.

Proof. We have already seen that A_{TM} is r.e. Suppose (for contradiction) A_{TM} is decidable. Then there is a TM M that always halts and $\mathbf{L}(M) = A_{\text{TM}}$. Consider a TM D as follows:

```
On input \langle N \rangle
Run M on input \langle N, \langle N \rangle \rangle
Output ''yes'' if M rejects \langle N, \langle N \rangle \rangle
Output ''no'' if M accepts \langle N, \langle N \rangle \rangle
Observe that \mathbf{L}(D) = L_d! But, L_d is not r.e. which gives us the contradiction.
```

A more complete Big Picture

