
1 Chomsky Hierarchy

Grammars for each task

Figure 1: Noam Chomsky

• Different types of rules, allow one to describe different aspects of natural language

• These grammars form a hierarchy

Grammars in General

All grammars we consider will be of the form G = (V,Σ, R, S)

• V is a finite set of variables

• Σ is a finite set of terminals

• R is a finite set of rules

• S is the start symbol

The different grammars will be determined by the form of the rules in R.

1.1 Regular Languages

Type 3 Grammars

The rules in a type 3 grammar are of the form

A→ aB or A→ a

where A,B ∈ V and a ∈ Σ ∪ {ε}.
We say αAβ ⇒G αγβ iff A→ γ ∈ R. L(G) = {w ∈ Σ∗ | S ∗⇒G w}

1

1.1.1 Type 3 Grammars and Regularity

Type 3 Grammars and Regularity

Proposition 1. If G is Type 3 grammar then L(G) is regular. Conversely, if L is regular then
there is a Type 3 grammar G such that L = L(G).

Proof. Let G = (V,Σ, R, S) be a type 3 grammar. Consider the NFA M = (Q,Σ, δ, q0, F) where

• Q = V ∪ {qF }, where qF 6∈ V

• q0 = S

• F = {qF }

• δ(A, a) = {B | if A→ aB ∈ R} ∪ {qF | if A→ a ∈ R} for A ∈ V . And δ(qF , a) = ∅ for all a.

L(M) = L(G) as ∀A ∈ V , ∀w ∈ Σ∗, A
∗⇒G w iff A

w−→M qF .
Conversely, let M = (Q,Σ, δ, q0, F) be a NFA recognizing L. Consider G = (V,Σ, R, S) where

• V = Q

• S = q0

• q1 → aq2 ∈ R iff q2 ∈ δ(q1, a) and q → ε ∈ R iff q ∈ F .

We can show, for any q, q′ ∈ Q and w ∈ Σ∗, q
w−→M q′ iff q

∗⇒G wq′. Thus, L(M) = L(G).

1.2 Context-free Languages

Type 2 Grammars

The rules in a type 2 grammar are of the form

A→ β

where A ∈ V and β ∈ (Σ ∪ V)∗.

We say αAβ ⇒G αγβ iff A→ γ ∈ R. L(G) = {w ∈ Σ∗ | S ∗⇒G w}
By definition, Type 2 grammars describe exactly the class of context-free languages.

2

1.3 Beyond Context-Free Languages

1.3.1 Type 0 Grammars

Type 0 Grammars

The rules in a type 0 grammar are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗.

We say γ1αγ2 ⇒G γ1βγ2 iff α→ β ∈ R. L(G) = {w ∈ Σ∗ | S ∗⇒G w}

Example of Type 0 Grammar

Example 2. Consider the grammar G with Σ = {a} with

S → $Ca# | a | ε Ca→ aaC $D → $C
C#→ D# | E aD → Da aE → Ea
$E → ε

The following are derivations in this grammar

S ⇒ $Ca#⇒ $aaC#⇒ $aaE ⇒ $aEa⇒ $Eaa⇒ aa

S ⇒ $Ca#⇒ $aaC#⇒ $aaD#⇒ $aDa#⇒ $Daa#⇒ $Caa#
⇒ $aaCa#⇒ $aaaaC#⇒ $aaaaE ⇒ $aaaEa⇒ $aaEaa
⇒ $aEaaa⇒ $Eaaaa⇒ aaaa

L(G) = {ai | i is a power of 2}

Expressive Power of Type 0 Grammars

Recall that any decision problem can be thought of as a formal language L, where x ∈ L iff the
answer on input x is “yes”.

Proposition 3. A decision problem L can be “solved on computers” iff L can be described by a
Type 0 grammar.

Proof. Need to develop some theory, that we will see in the next few weeks.

3

1.3.2 Type 1 Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form

α→ β

where α, β ∈ (Σ ∪ V)∗ and |α| ≤ |β|.
We say γ1αγ2 ⇒G γ1βγ2 iff α→ β ∈ R. L(G) = {w ∈ Σ∗ | S ∗⇒G w}

Normal Form for Type 1 Grammars

We can define a normal form for Type 1 grammars where all rules are of the form

α1Aα2 → α1βα2

Thus, the rules in Type 1, can be seen as rules of a CFG where a variable A is replaced by a
string β in one step, with the only difference being that rule can be applied only in the context
α1�α2.

Thus, languages described by Type 1 grammars are called context-sensitive languages.

1.3.3 Hierarchy

Chomsky Hierarchy

Theorem 4. Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal
languages.

Proof. Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special
Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar (L =
{0n1n |n ≥ 0}), a language that has a Type 1 grammar but no Type 2 grammar (L = {anbncn |n ≥
0}), and a language with a Type 0 grammar but no Type 1 grammar.

Overview of Languages

4

Regular
= Type 3

CFL
= Type 2 L0n1n

CSL
= Type 1 Lanbncn

Type 0

Languages

5

	Chomsky Hierarchy
	Regular Languages
	Type 3 Grammars and Regularity

	Context-free Languages
	Beyond Context-Free Languages
	Type 0 Grammars
	Type 1 Grammars
	Hierarchy

