1 Closure Properties

1.1 Regular Operations

Union of CFLs

Proposition 1. If L_{1} and L_{2} are context-free languages then $L_{1} \cup L_{2}$ is also context-free.
Proof. Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$. Assume that $V_{1} \cap V_{2}=\emptyset$; if this assumption is not true, rename the variables of one of the grammars to make this condition true.

We will construct a grammar $G=(V, \Sigma, R, S)$ such that $\mathbf{L}(G)=\mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$ as follows.

- $V=V_{1} \cup V_{2} \cup\{S\}$, where $S \notin V_{1} \cup V_{2}$ (and $V_{1} \cap V_{2}=\emptyset$)
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$

We need to show that $\mathbf{L}(G)=\mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$. Consider $w \in \mathbf{L}(G)$. That means there is a derivation $S \stackrel{*}{\Rightarrow}_{G} w$. Since the only rules involving S are $S \rightarrow S_{1}$ and $S \rightarrow S_{2}$, this derivation is either of the form $S \Rightarrow_{G} S_{1} \stackrel{*}{\Rightarrow}_{G} w$ or $S \Rightarrow_{G} S_{2} \stackrel{*}{\Rightarrow}_{G} w$. Consider the first case. Since the only rules for variables in V_{1} are those belonging to R_{1} and since $S_{1} \stackrel{*}{\Rightarrow}_{G} w$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w$, and so $w \in L_{1}=\mathbf{L}\left(G_{1}\right)$. If the derivation $S \stackrel{*}{*}_{G} w$ is of the form $S \Rightarrow_{G} S_{2} \stackrel{*}{\Rightarrow}_{G} w$, then by a similar reasoning we can conclude that $w \in \mathbf{L}\left(G_{2}\right)$. Hence if $w \in \mathbf{L}(G)$ then $w \in \mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$. Conversely, consider $w \in \mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$. Suppose $w \in \mathbf{L}\left(G_{1}\right)$; the case that $w \in \mathbf{L}\left(G_{2}\right)$ is similar and skipped. That means that $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w$. Since $R_{1} \subseteq R$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G} w$. Thus, we have $S \Rightarrow_{G} S_{1} \stackrel{*}{\Rightarrow}_{G} w$ which means that $w \in \mathbf{L}(G)$. This completes the proof.

Concatenation, Kleene Closure

Proposition 2. CFLs are closed under concatenation and Kleene closure
Proof. Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$. As before we will assume that $V_{1} \cap V_{2}=\emptyset$.

Concatenation Let $G=(V, \Sigma, R, S)$ be such that $V=V_{1} \cup V_{2} \cup\{S\}$ (with $S \notin V_{1} \cup V_{2}$), and $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$. We will show that $\mathbf{L}(G)=\mathbf{L}\left(G_{1}\right) \mathbf{L}\left(G_{2}\right)$. Suppose $w \in \mathbf{L}(G)$. Then there is a leftmost derivation $S \stackrel{*}{\Rightarrow}{ }_{1 \mathrm{~m}}^{G} w$. The form such a derivation is $S \Rightarrow^{G} S_{1} S_{2} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G}$ $w_{1} S_{2} \stackrel{*}{\Rightarrow}{ }_{\mathrm{lm}}^{G} w_{1} w_{2}=w$. Thus, $S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}{ }_{\mathrm{lm}}^{G} w_{2}$. Since the rules in R restricted to V_{1} are R_{1} and restricted to V_{2} are R_{2}, we can conclude that $S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G_{1}} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G_{2}} w_{2}$. Thus, $w_{1} \in \mathbf{L}\left(G_{1}\right)$ and $w_{2} \in \mathbf{L}\left(G_{2}\right)$ and therefore, $w=w_{1} w_{2} \in \mathbf{L}\left(G_{1}\right) \mathbf{L}\left(G_{2}\right)$. On the other hand, if $w_{1} \in \mathbf{L}\left(G_{1}\right)$ and $w_{2} \in \mathbf{L}\left(G_{2}\right)$ then we have $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}_{G_{2}} w_{2}$. Take $w=w_{1} w_{2} \in \mathbf{L}\left(G_{1}\right) \mathbf{L}\left(G_{2}\right)$. Now since $R_{1} \cup R_{2} \subseteq R$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}_{G} w_{2}$. Therefore, we have, $S \Rightarrow_{G} S_{1} S_{2} \stackrel{*}{\Rightarrow}_{G} w_{1} S_{2} \stackrel{*}{\Rightarrow}_{G} w_{1} w_{2}=w$, and so $w \in \mathbf{L}(G)$.

Kleene Closure Let $G=\left(V=V_{1} \cup\{S\}, \Sigma, R=R_{1} \cup\left\{S \rightarrow S S_{1} \mid \epsilon\right\}, S\right)$, where $S \notin V_{1}$. We will show that $\mathbf{L}(G)=\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. We will show if $w \in \mathbf{L}(G)$ then $w \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$ by induction on the length of the leftmost derivation of w. For the base case, consider w such that $S \Rightarrow{ }^{G} w$. Since $S \rightarrow \epsilon$ is the only rule for S whose right-hand side has terminals, this means that $w=\epsilon$. Further, $\epsilon \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$ which establishes the base case. The induction hypothesis assumes that for all strings w, if $S \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w$ in $<n$ steps then $w \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. Consider w such that $S \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w$ in n steps. Any leftmost derivation has the following form: $S \Rightarrow{ }^{G} S S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1} S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1} w_{2}=w$. Now we have $S \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1}$ is $<n$ steps (because $S_{1} \stackrel{*}{\Rightarrow}{ }_{l \mathrm{~lm}} w_{2}$ takes at least one step), and $S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{2}$. This means that $w_{1} \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$ (by induction hypothesis) and $w_{2} \in \mathbf{L}\left(G_{1}\right)$ (since the only rules in R for variables in V_{1} are those belonging to R_{1}). Thus, $w=w_{1} w_{2} \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. For the converse, suppose $w \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. By definition, this means that there are $w_{1}, w_{2}, \ldots w_{n}($ for $n \geq 0)$ such that $w_{i} \in \mathbf{L}\left(G_{1}\right)$ for all i. Now if $n=0$ (i.e., $w=\epsilon$) then we have $S \Rightarrow_{G} w$ because $S \rightarrow \epsilon$ is a rule. Otherise, since $w_{i} \in \mathbf{L}\left(G_{1}\right)$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w_{i}$, for each i. Since $R_{1} \subseteq R, S_{1} \stackrel{*}{\Rightarrow}_{G} w_{i}$. Hence we have the following derivation

$$
S \Rightarrow_{G} S S_{1} \Rightarrow_{G} S S S_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} S\left(S_{1}\right)^{n} \Rightarrow_{G}\left(S_{1}\right)^{n} \stackrel{*}{\Rightarrow}_{G} w_{1}\left(S_{1}\right)^{n-1} \stackrel{*}{\Rightarrow}_{G} \cdots \stackrel{*}{\Rightarrow}_{G} w_{1} w_{2} \cdots w_{n}=w
$$

1.2 Intersection and Complementation

Intersection

Proposition 3. CFLs are not closed under intersection
Proof. - $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL

- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b|\epsilon ; Y \rightarrow c Y| \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X|\epsilon ; Y \rightarrow b Y c| \epsilon$.
- But $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which we will see soon, is not a CFL.

Intersection with Regular Languages

Proposition 4. If L is a CFL and R is a regular language then $L \cap R$ is a CFL.
Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of M)
- These determine the transition function of P^{\prime}
- The final states of P^{\prime} are those in which both the state of P and state of M are accepting.

More formally, let $M=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA such that $\mathbf{L}(M)=R$, and $P=\left(Q_{2}, \Sigma, \Gamma, \delta_{2}, q_{2}, F_{2}\right)$ be a PDA such that $\mathbf{L}(P)=L$. Then consider $P^{\prime}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ such that

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left(q_{1}, q_{2}\right)$
- $F=F_{1} \times F_{2}$

$$
\delta((p, q), x, a)= \begin{cases}\left\{\left(\left(p, q^{\prime}\right), b\right) \mid\left(q^{\prime}, b\right) \in \delta_{2}(q, x, a)\right\} & \text { when } x=\epsilon \\ \left\{\left(\left(p^{\prime}, q^{\prime}\right), b\right) \mid p^{\prime}=\delta_{1}(p, x) \text { and }\left(q^{\prime}, b\right) \in \delta_{2}(q, x, a)\right\} & \text { when } x \neq \epsilon\end{cases}
$$

One can show by induction on the number of computation steps, that for any $w \in \Sigma^{*}$

$$
\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w}_{P^{\prime}}\langle(p, q), \sigma\rangle \text { iff } q_{1}{ }^{w}{ }_{M} p \text { and }\left\langle q_{2}, \epsilon\right\rangle \xrightarrow{w}_{P}\langle q, \sigma\rangle
$$

The proof of this statement is left as an exercise. Now as a consequence, we have $w \in L\left(P^{\prime}\right)$ iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w} P^{\prime}\langle(p, q), \sigma\rangle$ such that $(p, q) \in F$ (by definition of PDA acceptance) iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w} P_{P^{\prime}}$ $\langle(p, q), \sigma\rangle$ such that $p \in F_{1}$ and $q \in F_{2}$ (by definition of F) iff $q_{1} \xrightarrow{w}{ }_{M} p$ and $\left\langle q_{2}, \epsilon\right\rangle \xrightarrow{w} P\langle q, \sigma\rangle$ and $p \in F_{1}$ and $q \in F_{2}$ (by the statement to be proved as exercise) iff $w \in L(M)$ and $w \in L(P)$ (by definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 5. Context-free languages are not closed under complementation.
Proof. [Proof 1] Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a $C F L$
i.e., CFLs are closed under intersection. Contradiction!
[Proof 2] $L=\{x \mid x$ not of the form $w w\}$ is a CFL.
- L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a| X A X, B \rightarrow b|X B X, S \rightarrow A| B|A B| B A$

But $\bar{L}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ we will see is not a CFL!

Set Difference

Proposition 6. If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL
Proof. Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition 7. If L is a CFL and R is a regular language then $L \backslash R$ is a CFL
Proof. $L \backslash R=L \cap \bar{R}$

1.3 Homomorphisms

Homomorphism

Proposition 8. Context free languages are closed under homomorphisms.
Proof. Let $G=(V, \Sigma, R, S)$ be the grammar generating L, and let $h: \Sigma^{*} \rightarrow \Gamma^{*}$ be a homomorphism. A grammar $G^{\prime}=\left(V^{\prime}, \Gamma, R^{\prime}, S^{\prime}\right)$ for generating $h(L)$:

- Include all variables from G (i.e., $V^{\prime} \supseteq V$), and let $S^{\prime}=S$
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
- Add a new variable X_{a} to V^{\prime}
- In each rule of G, if a appears in the RHS, replace it by X_{a}
- For each X_{a}, add the rule $X_{a} \rightarrow h(a)$
G^{\prime} generates $h(L)$. (Exercise!)
Example 9. Let G have the rules $S \rightarrow 0 S 0|1 S 1| \epsilon$.
Consider the homorphism $h:\{0,1\}^{*} \rightarrow\{a, b\}^{*}$ given by $h(0)=a b a$ and $h(1)=b b$.
Rules of G^{\prime} s.t. $\mathbf{L}\left(G^{\prime}\right)=\mathbf{L}(L(G))$:

$$
\begin{aligned}
S & \rightarrow X_{0} S X_{0}\left|X_{1} S X_{1}\right| \epsilon \\
X_{0} & \rightarrow a b a \\
X_{1} & \rightarrow b b
\end{aligned}
$$

1.4 Inverse Homomorphisms

Inverse Homomorphisms

Recall: For a homomorphism $h, h^{-1}(L)=\{w \mid h(w) \in L\}$
Proposition 10. If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L : the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on $h(a)$. Can we do the same with PDAs?

- Key idea: store $h(a)$ in a "buffer" and process symbols from $h(a)$ one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Proof. Let $P=\left(Q, \Delta, \Gamma, \delta, q_{0}, F\right)$ be a PDA such that $\mathbf{L}(P)=L$. Let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism such that $n=\max _{a \in \Sigma}|h(a)|$, i.e., every symbol of Σ is mapped to a string under h of length at most n. Consider the PDA $P^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where

- $Q^{\prime}=Q \times \Delta^{\leq n}$, where $\Delta^{\leq n}$ is the collection of all strings of length at most n over Δ.
- $q_{0}^{\prime}=\left(q_{0}, \epsilon\right)$
- $F^{\prime}=F \times\{\epsilon\}$
- δ^{\prime} is given by

$$
\delta^{\prime}((q, v), x, a)= \begin{cases}\{((q, h(x)), \epsilon)\} & \text { if } v=a=\epsilon \\ \{((p, u), b) \mid(p, b) \in \delta(q, y, a)\} & \text { if } v=y u, x=\epsilon, \text { and } y \in(\Delta \cup\{\epsilon\})\end{cases}
$$

and $\delta^{\prime}(\cdot)=\emptyset$ in all other cases.
We can show by induction that for every $w \in \Sigma^{*}$

$$
\left\langle q_{0}^{\prime}, \epsilon\right\rangle \xrightarrow{w} P_{P^{\prime}}\langle(q, v), \sigma\rangle \mathrm{iff}\left\langle q_{0}, \epsilon\right\rangle{\xrightarrow{w^{\prime}}}_{P}\langle q, \sigma\rangle
$$

where $h(w)=w^{\prime} v$. Again this induction proof is left as an exercise. Now, $w \in \mathbf{L}\left(P^{\prime}\right)$ iff $\left\langle q_{0}^{\prime}, \epsilon\right\rangle \xrightarrow{w} P^{\prime}$ $\langle(q, \epsilon), \sigma\rangle$ where $q \in F$ (by definition of PDA acceptance and F^{\prime}) iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{h(w)}{ }_{P}\langle q, \sigma\rangle$ (by exercise) iff $h(w) \in \mathbf{L}(P)$ (by definition of PDA acceptance). Thus, $\mathbf{L}\left(P^{\prime}\right)=h^{-1}(\mathbf{L}(P))=h^{-1}(L)$.

