1 Computing Using a Stack

Beyond Finite Memory: The Stack

- So far we considered automata with finite memory
- Today: automata with access to an infinite stack
- The stack can contain an unlimited number of characters. But
- can read/erase only the top of the stack: pop
- can add to only the top of the stack: push
- On longer inputs, automaton may have more items in the stack

Keeping Count Using the Stack

- An automaton can use the stack to recognize $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- On reading a 0 , push it into the stack
- After the 0 s, on reading each 1 , pop a 0
- (If a 0 comes after a 1 , reject)
- If attempt to pop an empty stack, reject
- If stack not empty at the end, reject
- Else accept

Matching Parenthesis Using the Stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. $(())()$ is balanced, but ()$)()$ and $(()$ are not
- On seeing a (push it on the stack
- On seeing a) pop a (from the stack
- If attempt to pop an empty stack, reject
- If stack not empty at the end, reject
- Else accept

2 Definition of Pushdown Automata

Pushdown Automata (PDA)

Figure 1: A Pushdown Automaton

- Like an NFA with ϵ-transitions, but with a stack
- Stack depth unlimited: not a finite-state machine
- Non-deterministic: accepts if any thread of execution accepts
- Has a non-deterministic finite-state control
- At every step:
- Consume next input symbol (or none) and pop the top symbol on stack (or none)
- Based on current state, consumed input symbol and popped stack symbol, do (nondeterministically):

1. push a symbol onto stack (or push none)
2. change to a new state

If at q_{1}, with next input symbol a and top of stack x, then can consume a, pop x, push y onto stack and move to q_{2} (any of a, x, y may be ϵ)

Pushdown Automata (PDA): Formal Definition
A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where

- $Q=$ Finite set of states
- $\Sigma=$ Finite input alphabet
- $\Gamma=$ Finite stack alphabet
- $q_{0}=$ Start state
- $F \subseteq Q=$ Accepting/final states
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times(\Gamma \cup\{\epsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\epsilon\}))$

3 Examples of Pushdown Automata

Matching Parenthesis: PDA construction

- First push a "bottom-of-the-stack" symbol $\$$ and move to q
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack
- Pop $\$$ and move to final state q_{F}

Matching Parenthesis: PDA execution

Palindrome: PDA construction

- First push a "bottom-of-the-stack" symbol $\$$ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
- If $\$$ on top of stack move to accept state

Palindrome: PDA execution

4 Semantics of a PDA

4.1 Computation

Instantaneous Description

In order to describe a machine's execution, we need to capture a "snapshot" of the machine that completely determines future behavior

- In the case of an NFA (or DFA), it is the state
- In the case of a PDA, it is the state + stack contents

Definition 1. An instantaneous description of a PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ is a pair $\langle q, \sigma\rangle$, where $q \in Q$ and $\sigma \in \Gamma^{*}$

Computation

Definition 2. For a PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, string $w \in \Sigma^{*}$, and instantaneous descriptions $\left\langle q_{1}, \sigma_{1}\right\rangle$ and $\left\langle q_{2}, \sigma_{2}\right\rangle$, we say $\left\langle q_{1}, \sigma_{1}\right\rangle{ }^{w} P\left\langle q_{2}, \sigma_{2}\right\rangle$ iff there is a sequence of instanteous descriptions $\left\langle r_{0}, s_{0}\right\rangle,\left\langle r_{1}, s_{1}\right\rangle, \ldots\left\langle r_{k}, s_{k}\right\rangle$ and a sequence $x_{1}, x_{2}, \ldots x_{k}$, where for each $i, x_{i} \in \Sigma \cup\{\epsilon\}$, such that

- $w=x_{1} x_{2} \cdots x_{k}$,
- $r_{0}=q_{1}$, and $s_{0}=\sigma_{1}$,
- $r_{k}=q_{2}$, and $s_{k}=\sigma_{2}$,
- for every $i,\left(r_{i+1}, b\right) \in \delta\left(r_{i}, x_{i+1}, a\right)$ such that $s_{i}=a s$ and $s_{i+1}=b s$, where $a, b \in \Gamma \cup\{\epsilon\}$ and $s \in \Gamma^{*}$

Example of Computation

Example 3.
$\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{(()}\langle q,((\\rangle because

$$
\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{x_{1}=\epsilon}\langle q, \$\rangle \xrightarrow{x_{2}=(}\left\langle q,(\$\rangle \xrightarrow{x_{3}=(}\left\langle q,\left((\$ \rangle \xrightarrow { x _ { 4 } =) } \left\langleq,(\$\rangle \xrightarrow{x_{5}=(}\langle q,((\$\rangle\right.\right.\right.\right.
$$

4.2 Language Recognized

Acceptance/Recognition

Definition 4. A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts a string $w \in \Sigma^{*}$ iff for some $q \in F$ and $\sigma \in \Gamma^{*}$, $\left\langle q_{0}, \epsilon\right\rangle{ }^{w} P\langle q, \sigma\rangle$

Definition 5. The language recognized/accepted by a PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ is $\mathbf{L}(P)=\{w \in$ $\Sigma^{*} \mid P$ accepts $\left.w\right\}$. A language L is said to be accepted/recognized by P if $L=\mathbf{L}(P)$.

4.3 Expressive Power

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally, ...
Theorem 6. For every CFG G, there is a PDA P such that $\mathbf{L}(G)=\mathbf{L}(P)$. In addition, for every PDA P, there is a CFG G such that $\mathbf{L}(P)=\mathbf{L}(G)$. Thus, L is context-free iff there is a PDA P such that $L=\mathbf{L}(P)$.

Proof. Skipped.

