1 Expressiveness

1.1 Finite Languages

Finite Languages

Definition 1. A language is finite if it has finitely many strings.
Example 2. $\{0,1,00,10\}$ is a finite language, however, $(00 \cup 11)^{*}$ is not.
Proposition 3. If L is finite then L is regular.
Proof. Let $L=\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$. Then $R=w_{1} \cup w_{2} \cup \cdots \cup w_{n}$ is a regular expression defining L.

1.2 Non-Regular Languages

Are all languages regular?

Proposition 4. The language $L_{\mathrm{eq}}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an equal number of 0 s and $\left.1 s\right\}$ is not regular.

Proof? No DFA has enough states to keep track of the number of 0 s and 1 s it might see.
Above is a weak argument because $E=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an equal number of 01 and 10 substrings $\}$ is regular!

2 Proving Non-regularity

2.1 Lower Bound Method

Proving Non-Regularity

Proposition 5. The language $L_{\mathrm{eq}}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an equal number of 0 s and $\left.1 s\right\}$ is not regular.

Proof. Suppose (for contradiction) $L_{\text {eq }}$ is recognized by DFA $M=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$.
Let $W=\{0\}^{*}$. For any $w_{1}, w_{2} \in W$ with $w_{1} \neq w_{2}, \hat{\delta}_{M}\left(q_{0}, w_{1}\right) \neq \hat{\delta}_{M}\left(q_{0}, w_{2}\right)$. Let us observe that if the claim holds, then M has infinitely many states, and so is not a finite automaton, giving the desired contradiction.
Claim: For any $w_{1}, w_{2} \in W$ with $w_{1} \neq w_{2}, \hat{\delta}_{M}\left(q_{0}, w_{1}\right) \neq \hat{\delta}_{M}\left(q_{0}, w_{2}\right)$.
Proof of Claim: Suppose (for contradiction) there is w_{1} and w_{2} such that $\hat{\delta}_{M}\left(q_{0}, w_{1}\right)=\hat{\delta}_{M}\left(q_{0}, w_{2}\right)=$ $\{q\}$. Without loss of generality we can assume that $w_{1}=0^{i}$ and $w_{2}=0^{j}$, with $i<j$. Then, $\hat{\delta}_{M}\left(q_{0}, w_{1} 1^{i}=0^{i} 1^{i}\right)=\hat{\delta}_{M}\left(q, 1^{i}\right)=\hat{\delta}_{M}\left(q_{0}, w_{2} 1^{i}=0^{j} 1^{i}\right)$. Thus, M either accepts both $0^{i} 1^{i}$ and $0^{j} 1^{i}$, or neither. But $0^{i} 1^{i} \in L_{\mathrm{eq}}$ but $0^{j} 1^{i} \notin L_{\mathrm{eq}}$, contradicting the assumption that M recognizes L_{eq}.

Example I

Proposition 6. $L_{0 n 1 n}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.
Proof. Suppose $L_{0 n 1 n}$ is regular and is recignized by DFA $M=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$.

- Let $W=\{0\}^{*}$. For any $w_{1}, w_{2} \in W$ with $w_{1} \neq w_{2}, \hat{\delta}_{M}\left(q_{0}, w_{1}\right) \neq \hat{\delta}_{M}\left(q_{0}, w_{2}\right)$.
- Suppose (for contradiction) $\hat{\delta}_{M}\left(q_{0}, w_{1}\right)=\hat{\delta}_{M}\left(q_{0}, w_{2}\right)=\{q\}$, where $w_{1}=0^{i}$ and $w_{2}=0^{j}$, with $i<j$.
- Then, $\hat{\delta}_{M}\left(q_{0}, w_{1} 1^{i}=0^{i} 1^{i}\right)=\hat{\delta}_{M}\left(q, 1^{i}\right)=\hat{\delta}_{M}\left(q_{0}, w_{2} 1^{i}=0^{j} 1^{i}\right)$.
- But $0^{i} 1^{i} \in L_{0 n 1 n}$ but $0^{j} 1^{i} \notin L_{0 n 1 n}$, contradicting the assumption that M recognizes $L_{0 n 1 n}$.
- Because of the claim, M has infinitely many states, and so is not a finite automaton!

2.2 Using Closure Properties

Example II

Closure Properties
Proposition 7. $L_{\text {anban }}=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$ is not regular.
Proof. We could prove this proposition the way we demonstrated the other languages to be not regular. We could show that for any two (different) strings in $W=\{a\}^{*} b$, any DFA M recognizing $L_{\text {anban }}$ must go to different states, thus showing that M cannot have finitely many states. However, we choose to demonstrate a different technique to prove non-regularity of languages. This relies on closure properties.

The idea behind the proof is to show that if we had an automaton M accepting $L_{\text {anban }}$ then we can construct an automaton accepting $L_{0 n 1 n}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. But since we know $L_{0 n 1 n}$ is not regular, we can conclude $L_{\text {anban }}$ cannot be regular. This is the idea of reductions, where one shows that one problem (namely, $L_{0 n 1 n}$ in this case) can be solved using a modified version of an algorithm solving another problem ($L_{\text {anban }}$ in this case), which plays a central role in showing impossibility results. We will see more examples of this as the course goes on.

How do we show that a DFA recognizing $L_{a n b a n}$ can be modified to obtain a DFA for $L_{0 n 1 n}$? We will use closure properties for this. More formally, we will show that by applying a sequence of "regularity preserving" operations to $L_{a n b a n}$ we can get $L_{0 n 1 n}$. Then, since $L_{0 n 1 n}$ is not regular, $L_{\text {anban }}$ cannot be regular. The proof is as follows.

- Consider homomorphism $h_{1}:\{a, b, c\}^{*} \rightarrow\{a, b\}^{*}$ defined as $h_{1}(a)=a, h_{1}(b)=b, h_{1}(c)=a$.

$$
-L_{1}=h_{1}^{-1}\left(L_{\text {anban }}\right)=\left\{(a \cup c)^{n} b(a \cup c)^{n} \mid n \geq 0\right\}
$$

- Let $L_{2}=L_{1} \cap \mathbf{L}\left(a^{*} b c^{*}\right)=\left\{a^{n} b c^{n} \mid n \geq 0\right\}$
- Homomorphism $h_{2}:\{a, b, c\}^{*} \rightarrow\{0,1\}^{*}$ is defined as $h_{2}(a)=0, h_{2}(b)=\epsilon$, and $h_{2}(c)=1$.

$$
-L_{3}=h_{2}\left(L_{2}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=L_{0 n 1 n}
$$

- Now if $L_{\text {anban }}$ is regular then so are L_{1}, L_{2}, L_{3}, and $L_{0 n 1 n}$. But $L_{0 n 1 n}$ is not regular, and so L is not regular.

Example III

Proposition 8. $L_{\text {neq }}=\left\{w_{1} w_{2}\left|w_{1}, w_{2} \in\{0,1\}^{*},\left|w_{1}\right|=\left|w_{2}\right|\right.\right.$, but $\left.w_{1} \neq w_{2}\right\}$ is not regular.
Proof. As before there are two ways to show this result. First we can show that if M with initial state q_{0} is a DFA recognizing $L_{w w}$, then on any two (different) strings in $W=\{0,1\}^{*}, M$ must be in different states. This is because, suppose on $\left.x, y \in\{0,1\}^{*}, \hat{\delta}_{M}\left(q_{0}, x\right)=\hat{\delta}_{(} q_{0}, y\right)$ then $\hat{\delta}_{M}\left(q_{0}, x y\right)=$ $\hat{\delta}_{M}\left(q_{0}, y y\right)$. But $x y \in L_{\text {neq }}$ and $y y \notin L_{\text {neq }}$, giving us the desired contradiction. Thus, M must have infinitely many states (since $|W|$ is infinite), contradicting the fact that M is a finite automaton.

Another proof uses closure properties. Consider the following sequence of languages.

- Let $h_{1}:\{0,1, \#\}^{*} \rightarrow\{0,1\}^{*}$ be a homomorphism such that $h_{1}(0)=1, h_{1}(1)=1$ and $h_{1}(\#)=\epsilon$. Consider
$L_{1}=h_{1}^{-1}\left(L_{\mathrm{neq}}\right) \cap \mathbf{L}\left((0 \cup 1)^{*} \#(0 \cup 1)^{*}\right)=\left\{w_{1} \# w_{2}\left|w_{1}, w_{2} \in\{0,1\}^{*},\left|w_{1}\right|+\left|w_{2}\right|\right.\right.$ is even, and $\left.w_{1} \neq w_{2}\right\}$
- $L_{2}=\{0,1, \#\}^{*} \backslash L_{1}$
- $L_{3}=L_{1} \cap \mathbf{L}\left((0 \cup 1)^{*} \#(0 \cup 1)^{*}\right) \cap\left((\{0,1, \#\}\{0,1, \#\})^{*}\{0,1, \#\}\right)=\left\{w_{1} \# w_{2} \mid w_{1}, w_{2} \in\right.$ $\{0,1\}^{*}$, and $\left.w_{1}=w_{2}\right\}$
- Let $h_{2}:\{0,1, \overline{0}, \overline{1}, \#\}^{*} \rightarrow\{0,1, \#\}^{*}$ be a homomorphism where $h_{2}(0)=h_{2}(\overline{0})=0, h_{2}(1)=$ $h_{2}(\overline{1})=1$ and $h_{2}(\#)=\#$. Let $L_{4}=h_{2}^{-1}\left(L_{3}\right) \cap \mathbf{L}\left((\overline{0} \cup \overline{1})^{*} \#(0 \cup 1)^{*}\right)$. Observe that

$$
L_{4}=\left\{w_{1} \# w_{2} \mid w_{1} \in\{\overline{0}, \overline{1}\}^{*}, w_{2} \in\{0,1\}^{*} \text { and } w_{1} \text { is same as } w_{2} \text { except for the bars }\right\}
$$

- Let $h_{3}:\{0,1, \overline{0}, \overline{1}, \#\}^{*} \rightarrow\{0,1\}^{*}$ be the homomorphism where $h_{3}(\overline{0})=0, h_{3}(\overline{1})=h_{3}(\#)=$ $h_{3}(1)=\epsilon$, and $h_{3}(0)=1$. Observe that $h_{3}\left(L_{4}\right)=L_{0 n 1 n}$.

Due the closure properties of the regular languages, if $L_{\text {neq }}$ is regular, then so are $L_{1}, L_{2}, L_{3}, L_{4}, h_{3}\left(L_{4}=\right.$ $L_{0 n 1 n}$. But since $L_{0 n 1 n}$ is not regular, $L_{\text {neq }}$ is not regular.

2.3 Pumping Lemma

Pumping Lemma: Overview

Pumping Lemma

Gives the template of an argument that can be used to easily prove that many languages are non-regular.

Pumping Lemma

Lemma 9. If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p, \exists x, y, z \in \Sigma^{*}$ such that $w=x y z$ and

1. $|y|>0$
2. $|x y| \leq p$
3. $\forall i \geq 0 . x y^{i} z \in L$

Proof. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA such that $L(M)=L$ and let $p=|Q|$. Let $w=$ $w_{1} w_{2} \cdots w_{n} \in L$ be such that $n \geq p$. For $1 \leq i \leq n$, let $\left\{s_{i}\right\}=\hat{\delta}_{M}\left(q_{0}, w_{1} \cdots w_{i}\right)$; define $s_{0}=q_{0}$.

- Since $s_{0}, s_{1}, \ldots, s_{i}, \ldots s_{p}$ are $p+1$ states, there must be $j, k, 0 \leq j<k \leq p$ such that $s_{j}=s_{k}$ (= q say).
- Take $x=w_{1} \cdots w_{j}, y=w_{j+1} \cdots w_{k}$, and $z=w_{k+1} \cdots w_{n}$
- Observe that since $j<k \leq p$, we have $|x y| \leq p$ and $|y|>0$.

Claim

For all $i \geq 1, \hat{\delta}_{M}\left(q_{0}, x y^{i}\right)=\hat{\delta}_{M}\left(q_{0}, x\right)$.
Proof. We will prove it by induction on i.

- Base Case: By our assumption that $s_{j}=s_{k}$ and the definition of x and y, we have $\hat{\delta}_{M}\left(q_{0}, x y\right)=$ $\left\{s_{k}\right\}=\left\{s_{j}\right\}=\hat{\delta}_{M}\left(q_{0}, x\right)$.
- Induction Step: We have

$$
\begin{aligned}
\hat{\delta}_{M}\left(q_{0}, x y^{\ell+1}\right) & =\hat{\delta}_{M}(q, y) \text { where }\{q\}=\hat{\delta}_{M}\left(q_{0}, x y^{\ell}\right) \\
& =\hat{\delta}_{M}(q, y) \text { where }\{q\}=\hat{\delta}_{M}\left(q_{0}, x\right) \\
& =\hat{\delta}_{M}\left(q_{0}, x y\right)=\hat{\delta}_{M}\left(q_{0}, x\right)
\end{aligned}
$$

We now complete the proof of the pumping lemma.

- We have $\hat{\delta}_{M}\left(q_{0}, x y^{i}\right)=\hat{\delta}_{M}\left(q_{0}, x\right)$ for all $i \geq 1$
- Since $w \in L$, we have $\hat{\delta}_{M}\left(q_{0}, w\right)=\hat{\delta}_{M}\left(q_{0}, x y z\right) \subseteq F$
- Observe, $\hat{\delta}_{M}\left(q_{0}, x z\right)=\hat{\delta}_{M}(q, z)=\hat{\delta}_{M}\left(q_{0}, w\right)$, where $\{q\}=\hat{\delta}_{M}\left(q_{0}, x\right)=\hat{\delta}_{M}\left(q_{0}, x y\right)$. So $x z \in L$
- Similarly, $\hat{\delta}_{M}\left(q_{0}, x y^{i} z\right)=\hat{\delta}_{M}\left(q_{0}, x y z\right) \subseteq F$ and so $x y^{i} z \in L$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?
Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p, \exists x, y, z \in \Sigma^{*}$ such that $w=x y z$ and

1. $|y|>0$
2. $|x y| \leq p$
3. $\forall i \geq 0 . x y^{i} z \in L$

Answer

Yes, they do. Let p be larger than the longest string in the language. Then the condition " $\forall w \in L$ with $|w| \geq p, \ldots$." is vaccuously satisfied as there are no strings in the language longer than p !

Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular pumping lemma says nothing about L!

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$\forall p . \quad \exists w \in L$. with $|w| \geq p \quad \forall x, y, z \in \Sigma^{*} . w=x y z$
$\left.\begin{array}{l}\text { (1) }|y|>0 \\ \text { (2) }|x y| \leq p \\ \text { (3) } \quad \forall i \geq 0 . x y^{i} z \in L\end{array}\right\}$ not all of them hold
Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find i such that $x y^{i} z \notin L$

Game View

Think of using the Pumping Lemma as a game between you and an opponent.
$L \quad$ Task: To show that L is not regular
$\forall p$. Opponent picks p
$\exists w$. Pick w that is of length at least p
$\forall x, y, z \quad$ Opponent divides w into x, y, and z such that $|y|>0$, and $|x y| \leq p$
$\exists k . \quad$ You pick k and win if $x y^{k} z \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do). Contrapositive: If you can beat the opponent, L not regular.
Your strategy should work for any p and any subdivision that the opponent may come up with.

Example I

Proposition 10. $L_{0 n 1 n}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.
Proof. Suppose $L_{0 n 1 n}$ is regular. Let p be the pumping length for $L_{0 n 1 n}$.

- Consider $w=0^{p} 1^{p}$
- Since $|w|>p$, there are x, y, z such that $w=x y z,|x y| \leq p,|y|>0$, and $x y^{i} z \in L_{0 n 1 n}$, for all i.
- Since $|x y| \leq p, x=0^{r}, y=0^{s}$ and $z=0^{t} 1^{p}$. Further, as $|y|>0$, we have $s>0$.

$$
x y^{0} z=0^{r} \epsilon 0^{t} 1^{p}=0^{r+t} 1^{p}
$$

Since $r+t<p, x y^{0} z \notin L_{0 n 1 n}$. Contradiction!

Example II

Proposition 11. $L_{\mathrm{eq}}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has an equal number of 0 s and $\left.1 s\right\}$ is not regular.
Proof. Suppose L_{eq} is regular. Let p be the pumping length for L_{eq}.

- Consider $w=0^{p} 1^{p}$
- Since $|w|>p$, there are x, y, z such that $w=x y z,|x y| \leq p,|y|>0$, and $x y^{i} z \in L_{\mathrm{eq}}$, for all i.
- Since $|x y| \leq p, x=0^{r}, y=0^{s}$ and $z=0^{t} 1^{p}$. Further, as $|y|>0$, we have $s>0$.

$$
x y^{0} z=0^{r} \epsilon 0^{t} 1^{p}=0^{r+t} 1^{p}
$$

Since $r+t<p, x y^{0} z \notin L_{\mathrm{eq}}$. Contradiction!

Example III

Proposition 12. $L_{p}=\left\{0^{i} \mid i\right.$ prime $\}$ is not regular
Proof. Suppose L_{p} is regular. Let p be the pumping length for L_{p}.

- Consider $w=0^{m}$, where $m \geq p+2$ and m is prime.
- Since $|w|>p$, there are x, y, z such that $w=x y z,|x y| \leq p,|y|>0$, and $x y^{i} z \in L_{p}$, for all i.
- Thus, $x=0^{r}, y=0^{s}$ and $z=0^{t}$. Further, as $|y|>0$, we have $s>0 . x y^{r+t} z=0^{r}\left(0^{s}\right)^{(r+t)} 0^{t}=$ $0^{r+s(r+t)+t}$. Now $r+s(r+t)+t=(r+t)(s+1)$. Further $m=r+s+t \geq p+2$ and $s>0$ mean that $t \geq 2$ and $s+1 \geq 2$. Thus, $x y^{r+t} z \notin L_{p}$. Contradiction!

Example IV

Question

Is $L_{\mathrm{eq}}=\left\{x x \mid x \in\{0,1\}^{*}\right\}$ is regular?
Suppose L_{eq} is regular, and let p be the pumping length of L_{eq}.

- Consider $w=0^{p} 0^{p} \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x=\epsilon, y=00, z=0^{2 p-2}$.
- Does this mean $L_{\text {eq }}$ satisfies the pumping lemma? Does it mean it is regular?
- No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.
- Another bad choice $(01)^{p}(01)^{p}$.

Example IV

Reloaded
Proposition 13. $L_{\mathrm{eq}}=\left\{x x \mid x \in\{0,1\}^{*}\right\}$ is not regular.
Proof. Suppose L_{eq} is regular. Let p be the pumping length for $L_{x x}$.

- Consider $w=0^{p} 10^{p} 1$.
- Since $|w|>p$, there are x, y, z such that $w=x y z,|x y| \leq p,|y|>0$, and $x y^{i} z \in L_{p}$, for all i.
- Since $|x y| \leq p, x=0^{r}, y=0^{s}$ and $z=0^{t} 10^{p} 1$. Further, as $|y|>0$, we have $s>0$.

$$
x y^{0} z=0^{r} \epsilon 0^{t} 10^{p} 1=0^{r+t} 10^{p} 1
$$

Since $r+t<p, x y^{0} z \notin L_{\text {eq }}$. Contradiction!

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., $L_{0 n 1 n}$ not regular.
- "compare far apart pieces" of the input: e.g. $L_{x x}$ not regular.
- do "computations that require it to look at global properties" of the input.

