1 Expressiveness

1.1 Finite Languages

Finite Languages

Definition 1. A language is finite if it has finitely many strings.

Example 2. $\{0, 1, 00, 10\}$ is a finite language, however, $(00 \cup 11)^*$ is not.

Proposition 3. If L is finite then L is regular.

Proof. Let $L = \{w_1, w_2, \dots w_n\}$. Then $R = w_1 \cup w_2 \cup \dots \cup w_n$ is a regular expression defining L. \square

1.2 Non-Regular Languages

Are all languages regular?

Proposition 4. The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof? No DFA has enough states to keep track of the number of 0s and 1s it might see. \Box

Above is a weak argument because $E = \{w \in \{0,1\}^* | w \text{ has an equal number of } 01 \text{ and } 10 \text{ substrings}\}$ is regular!

2 Proving Non-regularity

2.1 Lower Bound Method

Proving Non-Regularity

Proposition 5. The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof. Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$.

Let $W = \{0\}^*$. For any $w_1, w_2 \in W$ with $w_1 \neq w_2$, $\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)$. Let us observe that if the claim holds, then M has infinitely many states, and so is not a finite automaton, giving the desired contradiction.

Claim: For any $w_1, w_2 \in W$ with $w_1 \neq w_2, \hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)$.

Proof of Claim: Suppose (for contradiction) there is w_1 and w_2 such that $\hat{\delta}_M(q_0, w_1) = \hat{\delta}_M(q_0, w_2) = \{q\}$. Without loss of generality we can assume that $w_1 = 0^i$ and $w_2 = 0^j$, with i < j. Then, $\hat{\delta}_M(q_0, w_1 1^i = 0^i 1^i) = \hat{\delta}_M(q, 1^i) = \hat{\delta}_M(q_0, w_2 1^i = 0^j 1^i)$. Thus, M either accepts both $0^i 1^i$ and $0^j 1^i$, or neither. But $0^i 1^i \in L_{\text{eq}}$ but $0^j 1^i \notin L_{\text{eq}}$, contradicting the assumption that M recognizes L_{eq} . \square

Example I

Proposition 6. $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. Suppose L_{0n1n} is regular and is recignized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$.

- Let $W = \{0\}^*$. For any $w_1, w_2 \in W$ with $w_1 \neq w_2$, $\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)$.
 - Suppose (for contradiction) $\hat{\delta}_M(q_0, w_1) = \hat{\delta}_M(q_0, w_2) = \{q\}$, where $w_1 = 0^i$ and $w_2 = 0^j$, with i < j.
 - Then, $\hat{\delta}_M(q_0, w_1 1^i = 0^i 1^i) = \hat{\delta}_M(q, 1^i) = \hat{\delta}_M(q_0, w_2 1^i = 0^j 1^i).$
 - But $0^i 1^i \in L_{0n1n}$ but $0^j 1^i \notin L_{0n1n}$, contradicting the assumption that M recognizes L_{0n1n} .
- Because of the claim, M has infinitely many states, and so is not a finite automaton!

2.2 Using Closure Properties

Example II

Closure Properties

Proposition 7. $L_{anban} = \{a^n b a^n \mid n \ge 0\}$ is not regular.

Proof. We could prove this proposition the way we demonstrated the other languages to be not regular. We could show that for any two (different) strings in $W = \{a\}^*b$, any DFA M recognizing L_{anban} must go to different states, thus showing that M cannot have finitely many states. However, we choose to demonstrate a different technique to prove non-regularity of languages. This relies on closure properties.

The idea behind the proof is to show that if we had an automaton M accepting L_{anban} then we can construct an automaton accepting $L_{0n1n} = \{0^n1^n \mid n \geq 0\}$. But since we know L_{0n1n} is not regular, we can conclude L_{anban} cannot be regular. This is the idea of reductions, where one shows that one problem (namely, L_{0n1n} in this case) can be solved using a modified version of an algorithm solving another problem (L_{anban} in this case), which plays a central role in showing impossibility results. We will see more examples of this as the course goes on.

How do we show that a DFA recognizing L_{anban} can be modified to obtain a DFA for L_{0n1n} ? We will use closure properties for this. More formally, we will show that by applying a sequence of "regularity preserving" operations to L_{anban} we can get L_{0n1n} . Then, since L_{0n1n} is not regular, L_{anban} cannot be regular. The proof is as follows.

- Consider homomorphism $h_1: \{a,b,c\}^* \to \{a,b\}^*$ defined as $h_1(a) = a$, $h_1(b) = b$, $h_1(c) = a$.
 - $L_1 = h_1^{-1}(L_{anban}) = \{(a \cup c)^n b(a \cup c)^n \mid n \ge 0\}$
- Let $L_2 = L_1 \cap \mathbf{L}(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- Homomorphism $h_2: \{a,b,c\}^* \to \{0,1\}^*$ is defined as $h_2(a) = 0$, $h_2(b) = \epsilon$, and $h_2(c) = 1$.

$$-L_3 = h_2(L_2) = \{0^n 1^n \mid n \ge 0\} = L_{0n1n}$$

• Now if L_{anban} is regular then so are L_1, L_2, L_3 , and L_{0n1n} . But L_{0n1n} is not regular, and so L is not regular.

Example III

Proposition 8. $L_{\text{neq}} = \{w_1 w_2 \mid w_1, w_2 \in \{0, 1\}^*, |w_1| = |w_2|, \text{ but } w_1 \neq w_2\} \text{ is not regular.}$

Proof. As before there are two ways to show this result. First we can show that if M with initial state q_0 is a DFA recognizing L_{ww} , then on any two (different) strings in $W = \{0,1\}^*$, M must be in different states. This is because, suppose on $x, y \in \{0,1\}^*$, $\hat{\delta}_M(q_0,x) = \hat{\delta}_(q_0,y)$ then $\hat{\delta}_M(q_0,xy) = \hat{\delta}_M(q_0,yy)$. But $xy \in L_{\text{neq}}$ and $yy \notin L_{\text{neq}}$, giving us the desired contradiction. Thus, M must have infinitely many states (since |W| is infinite), contradicting the fact that M is a finite automaton.

Another proof uses closure properties. Consider the following sequence of languages.

• Let $h_1: \{0,1,\#\}^* \to \{0,1\}^*$ be a homomorphism such that $h_1(0) = 1$, $h_1(1) = 1$ and $h_1(\#) = \epsilon$. Consider

$$L_1 = h_1^{-1}(L_{\text{neq}}) \cap \mathbf{L}((0 \cup 1)^* \# (0 \cup 1)^*) = \{w_1 \# w_2 | w_1, w_2 \in \{0, 1\}^*, |w_1| + |w_2| \text{ is even, and } w_1 \neq w_2\}$$

- $L_2 = \{0, 1, \#\}^* \setminus L_1$
- $L_3 = L_1 \cap \mathbf{L}((0 \cup 1)^* \# (0 \cup 1)^*) \cap ((\{0, 1, \#\}\{0, 1, \#\})^* \{0, 1, \#\}) = \{w_1 \# w_2 \mid w_1, w_2 \in \{0, 1\}^*, \text{ and } w_1 = w_2\}$
- Let $h_2: \{0, 1, \bar{0}, \bar{1}, \#\}^* \to \{0, 1, \#\}^*$ be a homomorphism where $h_2(0) = h_2(\bar{0}) = 0$, $h_2(1) = h_2(\bar{1}) = 1$ and $h_2(\#) = \#$. Let $L_4 = h_2^{-1}(L_3) \cap \mathbf{L}((\bar{0} \cup \bar{1})^* \# (0 \cup 1)^*)$. Observe that $L_4 = \{w_1 \# w_2 \mid w_1 \in \{\bar{0}, \bar{1}\}^*, w_2 \in \{0, 1\}^* \text{ and } w_1 \text{ is same as } w_2 \text{ except for the bars}\}$
- Let $h_3: \{0,1,\bar{0},\bar{1},\#\}^* \to \{0,1\}^*$ be the homomorphism where $h_3(\bar{0}) = 0$, $h_3(\bar{1}) = h_3(\#) = h_3(1) = \epsilon$, and $h_3(0) = 1$. Observe that $h_3(L_4) = L_{0n1n}$.

Due the closure properties of the regular languages, if L_{neq} is regular, then so are $L_1, L_2, L_3, L_4, h_3(L_4 = L_{0n1n})$. But since L_{0n1n} is not regular, L_{neq} is not regular.

2.3 Pumping Lemma

Pumping Lemma: Overview

Pumping Lemma

Gives the template of an argument that can be used to easily prove that many languages are non-regular.

Pumping Lemma

Lemma 9. If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

- 1. |y| > 0
- $2. |xy| \leq p$
- 3. $\forall i \geq 0$. $xy^i z \in L$

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \geq p$. For $1 \leq i \leq n$, let $\{s_i\} = \hat{\delta}_M(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p+1 states, there must be $j, k, 0 \le j < k \le p$ such that $s_j = s_k$ (= q say).
- Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$
- Observe that since $j < k \le p$, we have $|xy| \le p$ and |y| > 0.

Claim

For all $i \geq 1$, $\hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q_0, x)$.

Proof. We will prove it by induction on i.

- Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}_M(q_0, xy) = \{s_k\} = \{s_j\} = \hat{\delta}_M(q_0, x)$.
- Induction Step: We have

$$\begin{split} \hat{\delta}_{M}(q_{0}, xy^{\ell+1}) &= \hat{\delta}_{M}(q, y) \text{ where } \{q\} = \hat{\delta}_{M}(q_{0}, xy^{\ell}) \\ &= \hat{\delta}_{M}(q, y) \text{ where } \{q\} = \hat{\delta}_{M}(q_{0}, x) \\ &= \hat{\delta}_{M}(q_{0}, xy) = \hat{\delta}_{M}(q_{0}, x) \end{split}$$

We now complete the proof of the pumping lemma.

- We have $\hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q_0, x)$ for all $i \geq 1$
- Since $w \in L$, we have $\hat{\delta}_M(q_0, w) = \hat{\delta}_M(q_0, xyz) \subseteq F$
- Observe, $\hat{\delta}_M(q_0, xz) = \hat{\delta}_M(q, z) = \hat{\delta}_M(q_0, w)$, where $\{q\} = \hat{\delta}_M(q_0, x) = \hat{\delta}_M(q_0, xy)$. So $xz \in L$
- Similarly, $\hat{\delta}_M(q_0, xy^i z) = \hat{\delta}_M(q_0, xyz) \subseteq F$ and so $xy^i z \in L$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

- 1. |y| > 0
- $2. |xy| \leq p$
- 3. $\forall i > 0$. $xy^i z \in L$

Answer

Yes, they do. Let p be larger than the longest string in the language. Then the condition " $\forall w \in L$ with $|w| \geq p$, ..." is vaccuously satisfied as there are no strings in the language longer than p!

Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular pumping lemma says nothing about L!

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\forall p. \quad \exists w \in L. \text{ with } |w| \ge p \qquad \forall x, y, z \in \Sigma^*. \ w = xyz$$

$$(1) \quad |y| > 0$$

$$(2) \quad |xy| \le p$$

$$(3) \quad \forall i \ge 0. \ xy^iz \in L$$
and not all of them hold

Equivalent to showing that if (1),(2) then (3) does not. In other words, we can find i such that $xy^iz \notin L$

Game View

Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular $\forall p$. Opponent picks p $\exists w$. Pick w that is of length at least p $\forall x,y,z$ Opponent divides w into x,y, and z such that |y|>0, and $|xy|\leq p$ You pick k and win if $xy^kz\not\in L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do). Contrapositive: If you can beat the opponent, L not regular.

Your strategy should work for any p and any subdivision that the opponent may come up with.

Example I

Proposition 10. $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p, $xy^0z \notin L_{0n1n}$. Contradiction!

Example II

Proposition 11. $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof. Suppose L_{eq} is regular. Let p be the pumping length for L_{eq} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{eq}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p, $xy^0z \notin L_{eq}$. Contradiction!

Example III

Proposition 12. $L_p = \{0^i \mid i \text{ prime}\}\ is\ not\ regular$

Proof. Suppose L_p is regular. Let p be the pumping length for L_p .

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.

• Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0. $xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t}$. Now r + s(r+t) + t = (r+t)(s+1). Further $m = r+s+t \ge p+2$ and s > 0 mean that $t \ge 2$ and $s + 1 \ge 2$. Thus, $xy^{r+t}z \notin L_p$. Contradiction!

Example IV

Question

Is $L_{\text{eq}} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{eq} is regular, and let p be the pumping length of L_{eq} .

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
- Does this mean L_{eq} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.
- Another bad choice $(01)^p(01)^p$.

Example IV

Reloaded

Proposition 13. $L_{eq} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof. Suppose L_{eq} is regular. Let p be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$$

Since r + t < p, $xy^0z \notin L_{eq}$. Contradiction!

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., L_{0n1n} not regular.
- "compare far apart pieces" of the input: e.g. L_{xx} not regular.
- do "computations that require it to look at global properties" of the input.