1 Equivalence of Finite Automata and Regular Expressions

Finite Automata Recognize Regular Languages

Theorem 1. L is a reqular language iff there is a regular expression R such that L(R) = L iff
there is a DFA M such that L(M) = L iff there is a NFA N such that L(N) = L.

i.e., regular expressions, DFAs and NFAs have the same computational power.
Proof. e Given regular expression R, will construct NFA N such that L(N) = L(R)

e Given DFA M, will construct regular expression R such that L(M) = L(R) O

2 Regular Expressions to NFA

Regular Expressions to Finite Automata
... to Non-determinstic Finite Automata

Lemma 2. For any regex R, there is an NFA Ng s.t. L(Ngr) = L(R).

Proof Idea
We will build the NFA Np for R, inductively, based on the number of operators in R, #(R).

e Base Case: #(R) = 0 means that R is (), ¢, or a (from some a €). We will build NFAs for
these cases.

e Induction Hypothesis: Assume that for regular expressions R, with #(R) < n, there is an
NFA Ng s.t. L(Ng) = L(R).

e Induction Step: Consider R with #(R) = n. Based on the form of R, the NFA Ng will be
built using the induction hypothesis.

Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA Np is constructed as follows.

R=0 4‘
R=c¢ '

O
R=ua

Induction Step: Union

Case R=R;UR>
By induction hypothesis, there are N1, Ny s.t. L(N1) = L(R;) and L(N2) = L(R3). Build NFA N
s.t. L(N) = L(N;) UL(N2)

pO

*)

Figure 1: NFA for L(/N;) UL(N2)

Induction Step: Union
Formal Definition
Case R=R;UR>
Let N1 = (Ql, E,(Shql,Fl) and Ny = (QQ,E,(SQ,QQ,FQ) (With Q1NQy = @) be such that L<N1> =
L(R;) and L(N3) = L(R2). The NFA N = (Q, %, 4§, qo, F) is given by
e Q=0Q1UQ2U{qo}, where qo ¢ Q1 U Q2
e F=F,UF,

e § is defined as follows

61(q,a) ifqge

_) d2(q,a) ifqge Qo
oaa) {g1,¢2} fg=qoanda=c¢

0 otherwise

Induction Step: Union
Correctness Proof

Need to show that w € L(N) iff w € L(N;) UL(Na).

= w € L(N) 1mphes qo —>N q for some ¢ € F. Based on the transitions out of qg, g9 — N
g —Nq or o —N @2 —n ¢. Consider ¢ ——n 1 — N q. (Other case is similar) This
means ¢ —>N1 q (as N has the same transition as Nj on the states in Q1) and ¢ € Fy. This
means w € L(Ny).

< w € L(N7) UL(Ny). Consider w € L(Ny); case of w € L(Ny) is similar. Then, q; —y, ¢ for
some g € Fy. Thus, o —n ¢1 —>n ¢, and ¢ € F. This means that w € L(N).

Induction Step: Concatenation

Case R=R; 0o Ry
e By induction hypothesis, there are N1, Ny s.t. L(N;) = L(R;) and L(N2) = L(Rz2)
e Build NFA N s.t. L(N) = L(Ny) o L(Na)

—
P=ONO

Figure 2: NFA for L(N;) o L(Ny)

Induction Step: Concatenation
Formal Definition

Case R=R;0 Ry

Let N1 = (Q1,%,01,q1, F1) and Ny = (Q2,%, 02, g2, F3) (with Q1 N Q2 = @) be such that L(N;) =
L(R;) and L(N2) = L(R2). The NFA N = (Q, %, 6, qo, F') is given by

e Q=0Q1UQ>
® do = q1
o F'=F)

e ¢ is defined as follows

d1(g,a) ifge (Q\Fi)ora#e
) di(g,a)U{q} ifge Fyand a=¢
@9 =9 5y(0.0) if g € Qs
0 otherwise

Induction Step: Concatenation
Correctness Proof

Need to show that w € L(N) iff w € L(N71) o L(N2).

w € L(N) iff gg = ¢ for some g € F = F,. The computation of N on w starts in a state of
N (namely, gy = ¢1) and ends in a state of Ny (namely, ¢ € F5). The only transitions from a state
of N7 to a state of Ny is from a state in F; which have e-transitions to g9, the initial state of Ns.
Thus, we have

qo:qlinvqwithqu:Fg
iff
I e F. uveX. w=uw and go=q —N ¢ —N @2 —N ¢

This means that ¢1 —nx, ¢’ (with ¢/ € F1) and ¢o —=n, ¢ (with ¢ € F). Hence, u € L(N;) and
v € L(N3), and so w = uv € L(Ny)oL(N3). Conversely, if u € L(N7) and v € L(N2) then for some
q € Fy and q € F5, we have q; L>N1 ¢ and g0 L>N2 q. Then,

u] € v
g0 =q1 —N ¢ —N (g2 —N(

Thus, g “—= n ¢ and so uv € L(N).

Induction Step: Kleene Closure
First Attempt

Case R =R}
e By induction hypothesis, there is Ny s.t. L(N1) = L(Ry)
o Build NFA N s.t. L(N) = (L(Ny))*

Figure 3: NFA accepts (L(Nyp))*

Problem: May not accept €! One can show that L(N) = (L(Np))™.

Induction Step: Kleene Closure
Second Attempt

Case R = R}
e By induction hypothesis, there is Ny s.t. L(N1) = L(Ry)
o Build NFA N s.t. L(N) = (L(N))*

Figure 4: NFA accepts O (L(Ny))*

Problem: May accept strings that are not in (L(Np))*!

Example demonstrating the problem

0,1 0,1

Figure 6: Incorrect Kleene Closure of N

L(N)=(0uU1)*1(0U1)*. Thus, (L(N))* =eU(0U1)*1(0U 1)*. The previous construction, gives
an NFA that accepts 0 ¢ (L(N))*!

Induction Step: Kleene Closure
Correct Construction

Case R = Rj
o First build Ny s.t. L(N;) = L(R;)
e Given N; build NFA N s.t. L(N) = L(NVy)*

Figure 7: NFA for L(N;)*

Induction Step: Kleene Closure
Formal Definition

Case R = Rj
Let N1 = (Q1,%,61,q1, F1) be such that L(N;) = L(R;). The NFA N = (Q, %, 6, qo, F) is given by

* Q=Q1U{q} with g0 ¢ Q1
o F=FU{q}

e § is defined as follows

d1(q; a) ifge(Q\Fi)oraze
) di(g,a)U{q1} ifge Fianda=c¢
0(g,a) = {n1} if g=qpand a=c¢
0 otherwise

Induction Step: Kleene Closure
Correctness Proof

Let us begin by stating what our goal is. We would like to show w € L(N) iff w € L*. If we choose
to prove this statement by induction, most induction proofs will fail because this statement is too
weak to be established by induction. How we choose to strengthen it depends on what parameter
we will choose to induct over. One possibility is |w|. If we do induction on the length of w, then
we need to strengthen the statement by saying which strings are accepted from any state ¢ € Q,
and not just the initial state qp as in the above statement. We can carry such a proof out, but it is
long. We instead present a proof that does induction over a parameter different than length of w,
but before presenting this proof we need to introduce some notation and terminology that we will
find convenient.

Observe that we construct N from N; by adding some e-transitions: one from gy to g1, and
others from g € F to q1. We will call these “new” transitions. Recall that an accepting computation
is a sequence of steps starting from the initial state gy and ending in some accept state, such that
every step conforms to the transition relation. Let us call a computation p as having n new steps,
if exactly n steps in p are according to the new e-transitions. For any n, let us define

A, = {w € ¥* | w has an accepting computation where exactly n new transitions are used}

Observe that if w has an accepting computation then w € A,, for some n > 0.
We will prove by induction on n, the following statement

VneN we A, iffwelL"

Before proving the above stronger statement by induction, let us see how proving the above state-
ment establishes the correctness of the construction. Suppose w € L* then (by definition of Kleene
closure) w € L for some i € N. By the above statement, it would mean that w € A;. In other
words, w has an accepting computation that uses exactly ¢ new transitions, which just implies that
N accepts w. On the other hand, suppose N accepts w. Since N has an accepting computation
on w, it must have an accepting computation that uses exactly ¢ new transitions, for some value
of i. In other words, w € A;. By the above statement that means that w € L? which implies that
w € L*. Thus we can establish both sides of the correctness claim.
Let us now prove by induction on n

VneN weA,iffwel”

Base Case For this statement we need to establish two base cases: one when n = 0 and the other
when n = 1.

Case 1: Let n = 0. Since the only transition out of the initial state qg is a new transition,
w € Ap means that the computation takes no steps and stays in ¢g. If the computation on
w has no transition steps, it means that w = € and clearly w € LY. On the other hand, if
w € L% then w = € and N accepts w by taking no steps as gy € F. Thus, we have established
the base case for n = 0.

Case 2: Let n = 1. Suppose w € L, then Nj has an accepting computation. Thus, there
is ¢ € F} such that ¢ — ~N; ¢- Observe that since every transition of NV; is a transition of
N (which is not new), and F; C F we have the following accepting computation of N with
exactly one new transition

o —=N @1~y 4

Thus w € A;. Conversely, suppose w € Aj. Again, the only transition out of gy is a new
transition. Thus the accepting computation of N on w must be of the form

€ w
qgo —N q1 —N; ¢

for some g € F; the reason that ¢ must be in F} is because ¢ (the only other accept state)
has no incoming transitions. Thus, ¢ — N, q for ¢ € F1, which means that w is accepted
by N1, and from the fact that L(N;) = L, we can conclude that w € L = L'. We have,
therefore, established the base case for n = 1.

Ind. Hyp. Assume that for all i < n, w € A; iff w € L, where n > 1.

Ind. Step Suppose w € L™. Then there are u,v such that w = wv, v € L" ! and v € L. By
induction hypothesis, we have u € A,,_1. Now, since n > 1, the accepting computation on
must end in a state ¢ € F} (because once you leave ¢y you can never get back to it). Moreover
since v € L, from the correctness of Ny, we have ¢, — N, ¢ for some ¢’ € F;. Putting all of
this together we have the following accepting computation

U € v /
qQ —>NQqg —>Nq1L —>N; ¢

which has exactly n new transitions. Thus, w € A,. To prove the converse, suppose w € A,,.
Since n > 1, the accepting computation on w must be of the form

U € v /
qo —N g —N q1 —N; ¢

where w = uv, and ¢ and ¢’ are some states in Fy. Thus, u € A, _1. By induction hypothesis,
we have v € L™ . From the correctness of N1, ¢ LN N, ¢ for ¢ € Fi means that v € L.
Putting this together, we get that w = uv € (L" 1)L = L".

Regular Expressions to NFA
To Summarize

We built an NFA Ng for each regular expression R inductively

e When R was an elementary regular expression, we gave an explicit construction of an NFA
recognizing L(R)

e When R = Ry op Ry (or R = op(Ry1)), we constructed an NFA N for R, using the NFAs for
R1 and RQ.

Regular Expressions to NFA
An Example

Build NFA for (1U01)*

No1

Nivo1

Nauony-

3 DFAs to Regular Expressions

DFA to Regular Expression

e Given DFA M, will construct regular expression R such that L(M) = L(R). In two steps:

— Construct a “Generalized NFA” (GNFA) G from the DFA M
— And then convert G to a regex R

3.1 Generalized NFA
Generalized NFA

e A GNFA is similar to an NFA, but:

— There is a single accept state which is not the start state.

— The start state has no incoming transitions, and the accept state has no outgoing tran-
sitions.

x These are “cosmetic changes”: Any NFA can be converted to an equivalent NFA of
this kind.

— The transitions are labeled not by characters in the alphabet, but by reqular expressions.

x For every pair of states (q1,¢2), the transition from ¢; to g9 is labeled by a regular
expression p(q1, q2).

— “Generalized NFA” because a normal NFA has transitions labeled by €, elements in 3
(a union of elements, if multiple edges between a pair of states) and () (missing edges).

Generalized NFA

e Transition: GNFA non-deterministically reads a block of characters from the input, chooses
an edge from the current state gq; to another state go, and if the block of symbols matches
the regex p(q1, g2), then moves to go.

e Acceptance: G accepts w if there exists some sequence of valid transitions such that on
starting from the start state, and after finishing the entire input, G is in the accept state.

Generalized NFA: Example

10*10*

Figure 8: Example GNFA G

Accepting run of G on 11110100 is ¢q #G T i>G q ﬂ)G Q1 %G g2

Generalized NFA: Definition

Definition 3. A generalized nondeterministic finite automaton (GNFA) is G = (Q, X, o, qr, p),
where

Q is the finite set of states

Y is the finite alphabet

e gp € @ initial state

qr € (Q\ {qo}, a single accepting state

p:(Q\{gr}) x (Q\ {q}) — Rx, where Ry is the set of all regular expressions over the
alphabet X

Generalized NFA: Definition

Definition 4. For a GNFA M = (Q, X, qo, qr, p) and string w € ¥*, we say M accepts w iff there
exist x1,...,xy € X* and states rg, ..., such that

® W= T1X2X3 """ Tt
® 70 = qo and 7y = qF

e for each i € [1,t], z; € L(p(ri—1,73)),

10

3.2 Converting DFA to GNFA

Converting DFA to GNFA
A DFA M = (Q,X%,6,qo, F) can be easily converted to an equivalent GNFA G = (Q', %, ¢(, ¢, p):

e Q@ =QU{q), qp} where QN {qy,qp} =0
€, if ¢1 = ¢ and g2 = qo
e o(q1,q2) = { €, if g1 € F and ¢2 = ¢}

U{a|6(q1,a):q2} a otherwise

Prove: L(G) = L(M).

3.3 Converting GNFA to Regular Expression
GNFA to Regex

e Suppose G is a GNFA with only two states, go and gr.
e Then L(R) = L(G) where R = p(qo,qr)-

e How about G with three states?

11

e Plan: Reduce any GNFA G with k > 2 states to an equivalent GFA with k — 1 states.

GNFA to Regex: From k states to k — 1 states
Definition 5 (Deleting a GNFA State). Given GNFA G = (Q, %, qo, qr, p) with |Q| > 2, and any
state ¢* € Q \ {qo, qr}, define GNFA rip(G, ¢*) = (Q', 2, g0, qF, p') as follows:
e @ =Q\ {0
e For any (q1,¢2) € Q" \ {qr} x Q" \ {q} (possibly ¢1 = ¢2), let
p'(q1,q2) = (R1R3R3) U Ry,

where Ry = p(q1,q%), R2 = p(q*,q*), R3 = p(q¢*, q2) and Ry = p(q1,q2)-

GNFA to Regex: From k states to k — 1 states
Correctness

Proposition 6. For any ¢* € Q \ {qo0,qr}, G and rip(G,q*) are equivalent.

Proof. Let G' = rip(G, ¢*). We need to show that L(G) = L(G’). We will prove this in two steps:
we will show L(G) C L(G’) and then show L(G’) C L(G).
L(G) C L(G"): First we show w € L(G) = w € L(G'). w € L(G) = 3Jq0 =ro,71,---,7t = qF

and xy,...,x¢ € ¥* such that w = xjz9x3 - - - 2 and for each i, x; € L(p(ri—1,73)).

We need to show y1,...,yq € ¥* and g9 = sg, S1,...,8¢ = qr such that w = y; - - - y4, and for
each i, y; € L(p'(si-1,).

Define (so = qo, - .., Sq4 = qr) to be the sequence obtained by deleting all occurrences of ¢* from
(ro =qo,T1,---,7t = qF).

To formally define y;, first we define o as follows:

0 ifj=0
o(j) =XK1 if 0 <o(j—1)<t, where i = min;s ;1) (r: # ¢*)

undefined otherwise.

The range of o is the set of indices i such that r; # ¢*. Let d = ming(o(k) = t). Then, s; = 75(;),
for j =0,...,d.

Now we define y; = z,(j_1)41" " To(j) for j=1,...,d

Then y; - yg =1 T = w.

We need to show that y; € L(p'(sj—1,s;)) for all j. We consider the following cases for j:

e 0(j)=0(j —1)+1 (i.e,, 74(j—1)41 # ¢*)- Then y; = x; and s;_1 = ;1 and s; = 7, where
i=0(j). yj =2 € L(p(ri-1, 7)) € L(p'(ri-1,7i)) = L(p'(sj-1,5;))-

12

® 0(j) >0o(j—1)+1 (i.e, roj—1)41 = ¢*). Then y; = z4---x; and s;_1 = 1,1 and s; = 1,
where { =o(j — 1)+ 1 and i = o(j).

yj =x¢w; € L(p

—~
=3
~
=
<
~
SN—
=
—
=3
o~
<
~
+
=
N—

~p(ric1, i) p(risriv1))
pld*, q") " plq*
(*

(7i))
p(re—1,me)p(q", q") p(q,))
(* *

.q") p(q",85))

N 1N 1N

Thus w € L(G’) as we set out to prove.
L(G') € L(G): Next we need to show that w € L(G') = w € L(G). w € L(GZ) =
dgo = s0,51,...,8¢ = qr and y1,...,yq € X* such that w = y1y2y3---yq and for each j, y; €
L(p'(sj-1,8;)) = L ((p(sj-1,4")p(a",q")*p(q",7i)) U p(sj-1,55))

Define o as follows, for j =0,...,d:

0 if j—0,
o(j)=qo(—1)+1 if y; € L(p(sj-1,55))
o(j —1)+u+2 otherwise, where u = min, (y; € L(p(sj—1,¢*)p(q*, ¢*)"p(q*, 5;)))

Let t = o(d). For i =0,...,t define r; as follows:

(i) sj if there exists j such thati = o(j),
r(i) =
q* otherwise.

Finally, define ; (i = 1,...,t) as follows: if i = 0(j) and i — 1 = o(j — 1), then let z; = y;.
For other i (o(j —1) <i—1 <14 < o(j) for some j), we have y; € L(p(sj—1,¢")p(q*,q*)"p(q*, 55))
where u = o(j) — o(j — 1) — 2. Therefore we can write y; = ¢+ T4(;), where £ = o(j — 1) + 1,
such that z, € L(p(s;j-1,q")), Zo(j) € L(p(q*,s5)) and zpy1, ..., 750)—1 € L(p(g*,q")). Verify that
all z; (i =1,...,t) are well-defined by this.

With these definitions it can be easily verified that z¢ - --x; = yo - - - yq = w and z; € L(p(r;—1,7;)).

O

DFA to Regex: Summary

Lemma 7. For every DFA M, there is a regular expression R such that L(M) = L(R).

e Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).

e For any GNFA G = (Q, X, qv, qr, p) with |Q| > 2, for any ¢* € Q \ {qo,9r}, G and rip(G, ¢*)
are equivalent. rip(G, ¢*) has one fewer state than G.

e So given G, by applying rip repeatedly (choosing ¢* arbitrarily each time), we can get a GNFA
G’ with two states s.t. L(G) = L(G’). Formally, by induction on the number of states in G.

e For a 2-state GNFA G’, L(G’) = L(R), where R = p(qo, qr).

13

DFA to Regex: Example

Figure 9: Example DFA D

0
G
i

Figure 10: GNFA G equivalent to D, ignoring transitions labelled ()

14

Figure 11: Ripping q1

H@ 0*1(0 U (10*1))* @

Figure 12: Ripping g2

15

	Equivalence of Finite Automata and Regular Expressions
	Regular Expressions to NFA
	DFAs to Regular Expressions
	Generalized NFA
	Converting DFA to GNFA
	Converting GNFA to Regular Expression

