1 Operations on Languages

Operations on Languages

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
- e.g., $L_{1} \cup L_{2}, L_{1} \cap L_{2}, \ldots$
- A simple but powerful collection of operations:
- Union, Concatenation and Kleene Closure

Union is a familiar operation on sets. We define and explain the other two operations below. Concatenation of Languages

Definition 1. Given languages L_{1} and L_{2}, we define their concatenation to be the language $L_{1} \circ$ $L_{2}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$
Example 2. - $L_{1}=\{$ hello $\}$ and $L_{2}=\{$ world $\}$ then $L_{1} \circ L_{2}=\{$ helloworld $\}$

- $L_{1}=\{00,10\} ; L_{2}=\{0,1\} . L_{1} \circ L_{2}=\{000,001,100,101\}$
- $L_{1}=$ set of strings ending in $0 ; L_{2}=$ set of strings beginning with 01. $L_{1} \circ L_{2}=$ set of strings containing 001 as a substring
- $L \circ\{\epsilon\}=L . L \circ \emptyset=\emptyset$.

Kleene Closure

Definition 3.

$$
L^{n}=\left\{\begin{array}{ll}
\{\epsilon\} & \text { if } n=0 \\
L^{n-1} \circ L & \text { otherwise }
\end{array} \quad L^{*}=\bigcup_{i \geq 0} L^{i}\right.
$$

i.e., L^{i} is $L \circ L \circ \cdots \circ L$ (concatenation of i copies of L), for $i>0$.
L^{*}, the Kleene Closure of L : set of strings formed by taking any number of strings (possibly none) from L, possibly with repetitions and concatenating all of them.

- If $L=\{0,1\}$, then $L^{0}=\{\epsilon\}, L^{2}=\{00,01,10,11\} . L^{*}=$ set of all binary strings (including $\epsilon)$.
- $\emptyset^{0}=\{\epsilon\}$. For $i>0, \emptyset^{i}=\emptyset . \emptyset^{*}=\{\epsilon\}$
- \emptyset is one of only two languages whose Kleene closure is finite. Which is the other? $\{\epsilon\}^{*}=\{\epsilon\}$.

2 Regular Expressions

2.1 Definition and Identities

Regular Expressions

A Simple Programming Language

Figure 1: Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of "elementary" languages combined using the three operations union, concatenation and Kleene closure.

Regular Expressions

Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following forms:

	Syntax	Semantics
	\emptyset	$\mathbf{L}(\emptyset)=\{ \}$
Basis	ϵ	$\mathbf{L}(\epsilon)=\{\epsilon\}$
	a	$\mathbf{L}(a)=\{a\}$
Induction	$\left(R_{1} \cup R_{2}\right)$	$\mathbf{L}\left(\left(R_{1} \cup R_{2}\right)\right)=\mathbf{L}\left(R_{1}\right) \cup \mathbf{L}\left(R_{2}\right)$
	$\left(R_{1}^{*}\right)$	$\mathbf{L}\left(\left(R_{1} \circ R_{2}\right)\right)=\mathbf{L}\left(R_{1}\right) \circ \mathbf{L}\left(R_{2}\right)$
	$\mathbf{L}\left(\left(R_{1}^{*}\right)\right)=\mathbf{L}\left(R_{1}\right)^{*}$	

Notational Conventions

Removing the brackets To avoid cluttering of parenthesis, we adopt the following conventions.

- Precedence: $*, \circ, \cup$. For example, $R \cup S^{*} \circ T$ means $\left(R \cup\left(\left(S^{*}\right) \circ T\right)\right)$
- Associativity: $(R \cup(S \cup T))=((R \cup S) \cup T)=R \cup S \cup T$ and $(R \circ(S \circ T))=((R \circ S) \circ T)=R \circ S \circ T$.

Also will sometimes omit o: e.g. will write $R S$ instead of $R \circ S$ \qquad
Regular Expression Examples

R	$\mathbf{L}(R)$
$(0 \cup 1)^{*}$	$=(\{0\} \cup\{1\})^{*}=\{0,1\}^{*}$
$0 \emptyset$	\emptyset
$0^{*} \cup\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$	Strings where the number of 1 s is divisible by 3
$(0 \cup 1)^{*} 001(0 \cup 1)^{*}$	Strings that have 001 as a substring
$(10)^{*} \cup(01)^{*} \cup 0(10)^{*} \cup 1(01)^{*}$	Strings that consist of alternating 0s and 1 s
$(\epsilon \cup 1)(01)^{*}(\epsilon \cup 0)$	Strings that consist of alternating 0s and 1 s
$(0 \cup \epsilon)(1 \cup 10)^{*}$	Strings that do not have two consecutive 0 s

Regular Languages

Definition 4. A language $L \subseteq \Sigma^{*}$ is a regular language iff there is a regular expression R such that $\mathbf{L}(R)=L$.

Some Regular Expression Identities

We say $R_{1}=R_{2}$ if $\mathbf{L}\left(R_{1}\right)=\mathbf{L}\left(R_{2}\right)$.

- Commutativity: $R_{1} \cup R_{2}=R_{2} \cup R_{1}$ (but $R_{1} \circ R_{2} \neq R_{2} \circ R_{1}$ typically)
- Associativity: $\left(R_{1} \cup R_{2}\right) \cup R_{3}=R_{1} \cup\left(R_{2} \cup R_{3}\right)$ and $\left(R_{1} \circ R_{2}\right) \circ R_{3}=R_{1} \circ\left(R_{2} \circ R_{3}\right)$
- Distributivity: $R \circ\left(R_{1} \cup R_{2}\right)=R \circ R_{1} \cup R \circ R_{2}$ and $\left(R_{1} \cup R_{2}\right) \circ R=R_{1} \circ R \cup R_{2} \circ R$
- Concatenating with $\epsilon: R \circ \epsilon=\epsilon \circ R=R$
- Concatenating with $\emptyset: R \circ \emptyset=\emptyset \circ R=\emptyset$
- $R \cup \emptyset=R . R \cup \epsilon=R$ iff $\epsilon \in L(R)$
- $\left(R^{*}\right)^{*}=R^{*}$
- $\emptyset^{*}=\epsilon$

Useful Notation

Definition 5. Define $R^{+}=R R^{*}$. Thus, $R^{*}=R^{+} \cup \epsilon$. In addition, $R^{+}=R^{*}$ iff $\epsilon \in L(R)$.

