1 Introducing Nondeterminism

1.1 Informal Overview

Nondeterminism

Michael Rabin and Dana Scott (1959)

Figure 1: Michael Rabin

Figure 2: Dana Scott

Nondeterminism

Given a current state of the machine and input symbol to be read, the next state is not uniquely determined.

Comparison to DFAs

Nondeterministic Finite Automata (NFA)
NFAs have 3 features when compared with DFAs.

1. Ability to take a step without reading any input symbol
2. A state may have no transition on a particular symbol
3. Ability to transition to more than one state on a given symbol

ϵ-Transitions

Transitions without reading input symbols
Example 1. The British spelling of "color" is "colour". In a web search application, you may want to recognize both variants.

Figure 3: NFA with ϵ-transitions

No transitions

Example 2.

Figure 4: No 0-transition out of initial state
In the above automaton, if the string starts with a 0 then the string has no computation (i.e., rejected).

Multiple Transitions

Figure 5: q_{ϵ} has two 0-transitions

1.2 Nondeterministic Computation

Parallel Computation View

At each step, the machine "forks" a thread corresponding to one of the possible next states.

- If a state has an ϵ-transition, then you fork a new process for each of the possible ϵ-transitions, without reading any input symbol
- If the state has multiple transitions on the current input symbol read, then fork a process for each possibility
- If from current state of a thread, there is no transition on the current input symbol then the thread dies

Parallel Computation View: An Example

Figure 6: Example NFA

Figure 7: Computation on 0100

Nondeterministic Acceptance

Parallel Computation View
Input is accepted if after reading all the symbols, one of the live threads of the automaton is in a final/accepting state. If none of the live threads are in a final/accepting state, the input is rejected.

0100 is accepted because one thread of computation is $q_{\epsilon} \xrightarrow{0} q_{0} \xrightarrow{\epsilon} q_{00} \xrightarrow{1} q_{p} \xrightarrow{0} q_{p} \xrightarrow{0} q_{p}$

Computation: Guessing View

The machine magically guesses the choices that lead to acceptance

Figure 8: NFA $M_{\text {color }}$
After seeing "colo" the automaton guesses if it will see the british or the american spelling. If it guesses american then it moves without reading the next input symbol.

Observations: Guessing View

- If there is a sequence of choices that will lead to the automaton (not "dying" and) ending up in an accept state, then those choices will be magically guessed
- On the other hand, if the input will not be accepted then no guess will lead the to automaton being in an accept state
- On the input "colobr", whether automaton $M_{\text {color }}$ guesses british or american, it will not proceed when it reads ' b '.

2 Formal Definitions

2.1 NFAs

Nondeterministic Finite Automata (NFA)
 Formal Definition

Definition 3. A nondeterministic finite automaton (NFA) is $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow \mathcal{P}(Q)$, where $\mathcal{P}(Q)$ is the powerset of Q
- $q_{0} \in Q$ initial state
- $F \subseteq Q$ final/accepting states

Example of NFA

Figure 9: Transition Diagram of NFA
Formally, the NFA is $M_{001}=\left(\left\{q_{\epsilon}, q_{0}, q_{00}, q_{p}\right\},\{0,1\}, \delta, q_{\epsilon},\left\{q_{p}\right\}\right)$ where δ is given by

$$
\begin{array}{lll}
\delta\left(q_{\epsilon}, 0\right)=\left\{q_{\epsilon}, q_{0}\right\} & \delta\left(q_{\epsilon}, 1\right)=\left\{q_{\epsilon}\right\} & \delta\left(q_{0}, 0\right)=\left\{q_{00}\right\} \\
\delta\left(q_{00}, 1\right)=\left\{q_{p}\right\} & \delta\left(q_{p}, 0\right)=\left\{q_{p}\right\} & \delta\left(q_{p}, 1\right)=\left\{q_{p}\right\}
\end{array}
$$

δ is \emptyset in all other cases.

2.2 Nondeterministic Computation

Computation

Definition 4. For an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, string w, and states $q_{1}, q_{2} \in Q$, we say $q_{1} \xrightarrow{w}{ }_{M} q_{2}$ if there is one thread of computation on input w from state q_{1} that ends in q_{2}. Formally, $q_{1} \xrightarrow{w} M q_{2}$ if there is a sequence of states $r_{0}, r_{1}, \ldots r_{k}$ and a sequence $x_{1}, x_{2}, \ldots x_{k}$, where for each $i, x_{i} \in \Sigma \cup\{\epsilon\}$, such that

- $r_{0}=q_{1}$,
- for each $i, r_{i+1} \in \delta\left(r_{i}, x_{i+1}\right)$,
- $r_{k}=q_{2}$, and
- $w=x_{1} x_{2} x_{3} \cdots x_{k}$

Differences with definition for DFA

- Since δ gives a set of states, for each i, r_{i+1} is required to be in $\delta\left(r_{1}, x_{i+1}\right)$, and not equal to it (as is the case for DFAs)
- Allowing/inserting ϵ in to the input sequence

Example Computation

$q_{\epsilon} \xrightarrow{0100}_{M} q_{p}$ because taking $r_{0}=q_{\epsilon}, r_{1}=q_{0}, r_{2}=q_{00}, r_{3}=q_{p}, r_{4}=q_{p}, r_{5}=q_{p}$, and $x_{1}=0$, $x_{2}=\epsilon, x_{3}=1, x_{4}=0, x_{5}=0$, we have

- $x_{1} x_{2} \cdots x_{5}=0 \epsilon 100=0100$
- $r_{i+1} \in \delta\left(r_{i}, x_{i+1}\right)$

Acceptance/Recognition

Definition 5. For an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and string $w \in \Sigma^{*}$, we say M accepts w iff $q_{0} \xrightarrow{w}{ }_{M} q$ for some $q \in F$.

Definition 6. The language accepted or recognized by NFA M over alphabet Σ is $\mathbf{L}(M)=\{w \in$ $\Sigma^{*} \mid M$ accepts $\left.w\right\}$. A language L is said to be accepted/recognized by M if $L=\mathbf{L}(M)$.

Useful Notation

Definition 7. For an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, string w, and state $q \in Q$, we say $\hat{\delta}_{M}(q, w)$ to denote states of all the active threads of computation on input w from q. Formally,

$$
\hat{\delta}_{M}(q, w)=\left\{q^{\prime} \in Q \mid q \xrightarrow{w}_{M} q^{\prime}\right\}
$$

We could say M accepts w iff $\hat{\delta}_{M}\left(q_{0}, w\right) \cap F \neq \emptyset$.

Observation 1

For NFA M, string w and state q_{1} it could be that

- $\hat{\delta}_{M}\left(q_{1}, w\right)=\emptyset$
- $\hat{\delta}_{M}\left(q_{1}, w\right)$ has more than one element

Observation 2

However, the following proposition about DFAs continues to hold for NFAs
For NFA M, strings u and v, and states $q_{1}, q_{2}, q_{1}{ }_{M}^{u v} q_{2}$ iff there is a state q such that $q_{1}{ }^{u}{ }_{M} q$ and $q \xrightarrow{v}{ }_{M} q_{2}$

Example

Figure 10: Example NFA

$$
\hat{\delta}_{M}\left(q_{\epsilon}, 0100\right)=\left\{q_{p}, q_{00}, q_{\epsilon}\right\}
$$

Figure 11: Computation on 0100

2.3 Examples

Example I

Figure 12: Automaton accepts strings having a 1 three positions from end of input

The automaton "guesses" at some point that the 1 it is seeing is 3 positions from end of input.

Example II

Figure 13: NFA accepting strings where the length is either a multiple 2 or 3

The NFA "guesses" at the begining whether it will see a multiple of 2 or 3 , and then confirms that the guess was correct.

Example III

Figure 14: NFA accepting strings with 001 as substring

At some point the NFA "guesses" that the pattern 001 is starting and then checks to confirm the guess.

3 Power of Nondeterminism

3.1 Overview

Using Nondeterminism

When designing an NFA for a language

- You follow the same methodology as for DFAs, like identifying what needs to be remembered
- But now, the machine can "guess" at certain steps

3.2 Examples

Back to the Future

Problem

For $\Sigma=\{0,1,2\}$, let

$$
L=\left\{w \# c \mid w \in \Sigma^{*}, c \in \Sigma, \text { and } c \text { occurs in } w\right\}
$$

So $1011 \# 0 \in L$ but $1011 \# 2 \notin L$. Design an NFA recognizing L.

Solution

- Read symbols of w, i.e., portion of input before \# is seen
- Guess at some point that current symbol in w is going to be the same as ' c^{\prime} '; store this symbol in the state
- Read the rest of w
- On reading \#, check that the symbol immediately after is the one stored, and that the input ends immediately after that.

Figure 15: $L(M)=\{w \# c \mid c$ occurs in $w\}$

Pattern Recognition

Problem

For alphabet Σ and $u \in \Sigma^{*}$, let

$$
L_{u}=\left\{w \in \Sigma^{*} \mid \exists v_{1}, v_{2} \in \Sigma^{*} . w=v_{1} u v_{2}\right\}
$$

That is, L_{u} is all strings that have u as a substring.

Solution

- Read symbols of w
- Guess at some point that the string u is going to be seen
- Check that u is indeed read
- After reading u, read the rest of w

To do this, the automaton will remember in its state what prefix of u it has seen so far; the initial state will assume that it has not seen any of u, and the final state is one where all the symbols of u have been observed.

Formally, we can define this automaton as follows. Let $u=a_{1} a_{2} \cdots a_{n}$. The NFA $M=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- $Q=\left\{\epsilon, a_{1}, a_{2} a_{2}, a_{1} a_{2} a_{3}, \ldots, a_{1} a_{2} \cdots a_{n}=u\right\}$. Thus, every prefix of u is a state of NFA M.
- $q_{0}=\epsilon$,
- $F=\{u\}$,
- And δ is given as follows

$$
\delta(q, a)= \begin{cases}\{\epsilon\} & \text { if } q=\epsilon, a \neq a_{1} \\ \left\{\epsilon, a_{1}\right\} & \text { if } q=\epsilon, a=a_{1} \\ \left\{a_{1} a_{2} \cdots a_{i+1}\right\} & \text { if } q=a_{1} \cdots a_{i}(1 \leq i<n), a=a_{i+1} \\ \{u\} & \text { if } q=u \\ \emptyset & \text { otherwise }\end{cases}
$$

See Example III above for a concrete case.

$1 k$-positions from the end

Problem

For alphabet $\Sigma=\{0,1\}$,

$$
L_{k}=\left\{w \in \Sigma^{*} \mid \exists v_{1}, v_{2} \in \Sigma^{*} . w=v_{1} 1 v_{2} \text { and }\left|v_{2}\right|=k-1\right\}
$$

That is, L_{k} is all strings that have a $1 k$ positions from the end.

Solution

- Read symbols of w
- Guess at some point that there are only going to be k more symbols in the input
- Check that the first symbol after this point is a 1 , and that we see $k-1$ symbols after that
- Halt and accept no more input symbols

The states need to remember that how far we are from the end of the input; either very far (initial state), or less that k symbols from end.

Formally, $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- $Q=\left\{q_{i} \mid 0 \leq i \leq k\right\}$. The subscript of the state counts how far we are from the end of the input; q_{0} means that there can be many symbols left before the end, and $q_{i}(i>1)$ means there are $k-i$ symbols left to read.
- $q_{0}=q_{0}$
- $F=\left\{q_{k}\right\}$,
- And δ is given as follows

$$
\delta(q, a)= \begin{cases}\left\{q_{0}\right\} & \text { if } q=q_{0}, a=0 \\ \left\{q_{0}, q_{1}\right\} & \text { if } q=q_{0}, a=1 \\ \left\{q_{i+1}\right\} & \text { if } q=q_{i}(1 \leq i<k) \\ \emptyset & \text { otherwise }\end{cases}
$$

See Example I above for a concrete case.
Observe that this automaton has only $k+1$ states, whereas we proved in lecture 3 that any DFA recognizing this language must have size at least 2^{k}. Thus, NFAs can be exponentially smaller than DFAs.

Proposition 8. There is a family of languages L_{k} (for $k \in \mathbb{N}$) such that the smallest DFA recognizing L_{k} has at least 2^{k} states, whereas there is an NFA with only $O(k)$ recognizing L_{k}.

Proof. Follows from the observations above.

Halving a Language

Definition 9. For a language L, define $\frac{1}{2} L$ as follows.

$$
\frac{1}{2} L=\{x|\exists y \cdot| x|=|y| \text { and } x y \in L\}
$$

In other words, $\frac{1}{2} L$ consists of the first halves of strings in L
Example 10. If $L=\{001,0000,01,110010\}$ then $\frac{1}{2} L=\{00,0,110\}$.

Recognizing Halves of Regular Languages

Proposition 11. If L is recognized by a DFA M then there is a $N F A N$ such that $L(N)=\frac{1}{2} L$.

Proof Idea

On input x, need to check if x is the first half of some string $w=x y$ that is accepted by M.

- "Run" M on input x; let M be in state q_{i} after reading all of x
- Guess a string y such that $|y|=|x|$
- Check if M reaches a final state on reading y from q_{i}

How do you guess a string y of equal length to x using finite memory? Seems to require remembering the length of x !

Fixing the Idea

Problem and Fix(?)

- How do you guess a string y of equal length to x using finite memory? Guess one symbol of y as you read one symbol of x !
- How do you "run" M on y from q_{i}, if you cannot store all the symbols of y ? Run M on y as you guess each symbol, without waiting to finish the execution on x !
- If we don't first execute M on x, how do we know the state q_{i} from which we have to execute y from? Guess it! And then check that running M on x does indeed end in q_{i}, your guessed state.

New Algorithm

On input x, NFA N

1. Guess state q_{i} and place "left finger" on (initial state of M) q_{0} and "right finger" on q_{i}
2. As characters of x are read, N moves the left finger along transitions dictated by x and simultaneously moves the right finger along nondeterministically chosen transitions labelled by some symbol
3. Accept if after reading x, left finger is at q_{i} (state initially guessed for right finger) and right finger is at an accepting state

Things to remember: initial guess for right finger, and positions of left and right finger.

Algorithm on Example

Figure 16: DFA M
$100010 \in L$ and so $x=100 \in \frac{1}{2} L$
NFA N execution on $x=100$ is

String Read	Left Finger		Right Finger
ϵ	q_{0}	\upharpoonright	$\underline{q_{2}}$
1	q_{1}	$=?$	q_{2}
10	q_{3}		q_{1}
100	q_{2}	\leftarrow	q_{3}
		accept?	

Formal Construction of NFA N

States and Initial State
Given $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognizing L define $N=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ that recognizes $\frac{1}{2} L$

- $Q^{\prime}=Q \times Q \times Q \cup\{s\}$, where $s \notin Q$
$-s$ is a new start state
- Other states are of the form 〈left finger, initial guess, right finger〉; "initial guess" records the initial guess for the right finger
- $q_{0}^{\prime}=s$
- Transitions

$$
\begin{aligned}
& \delta^{\prime}(s, \epsilon)=\left\{\left\langle q_{0}, q_{i}, q_{i}\right\rangle \mid q_{i} \in Q\right\} \\
& \text { "Guess" the state } q_{i} \text { that the input will lead to } \\
& \delta^{\prime}\left(\left\langle q_{i}, q_{j}, q_{k}\right\rangle, a\right)=\left\{\left\langle q_{l}, q_{j}, q_{m}\right\rangle \mid \delta\left(q_{i}, a\right)=q_{l},\right. \\
& \left.\quad \exists b \in \Sigma . \delta\left(q_{k}, b\right)=q_{m}\right\}
\end{aligned}
$$

b is the guess for the next symbol of y and initial guess does not change

- $F^{\prime}=\left\{\left\langle q_{i}, q_{i}, q_{j}\right\rangle \mid q_{i} \in Q, q_{j} \in F\right\}$

