1 Introducing Finite Automata

1.1 Problems and Computation

Decision Problems

Decision Problems

Given input, decide "yes" or "no"

- Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G ?
- i.e., Compute a boolean function of input

General Computational Problem

In contrast, typically a problem requires computing some non-boolean function, or carrying out an interactive/reactive computation in a distributed environment

- Examples: Find the factors of x. Find the balance in account number x.
- In this course, we will study decision problems because aspects of computability are captured by this special class of problems

What Does a Computation Look Like?

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- As the program starts executing, some memory (a.k.a. state)
- Includes the values of variables (and the "program counter")
- State evolves throughout the computation
- Often, takes more memory for larger problem instances
- But some programs do not need larger state for larger instances!

1.2 Finite Automata: Informal Overview

Finite State Computation

- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
- A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)
- If t-bit state, at most 2^{t} possible states
- Not enough memory to hold the entire input
- "Streaming input": automaton runs (i.e., changes state) on seeing each bit of input

An Automatic Door

Figure 1: Top view of Door

Figure 2: State diagram of controller

- Input: A stream of events <front>, <rear>, <both>, <neither>...
- Controller has a single bit of state.

Finite Automata

Details

Automaton

A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions from one state to another on reading a symbol from the input.

Computation

Start at the initial state; in each step, read the next symbol of the input, take the transition (edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the input w, the machine is in a final state then w is accepted; otherwise w is rejected.

Figure 3: Transition Diagram of automaton

Conventions

- The initial state is shown by drawing an incoming arrow into the state, with no source.
- Final/accept states are indicated by drawing them with a double circle.

Example: Computation

- On input 1001, the computation is

1. Start in state q_{0}. Read 1 and goto q_{1}.
2. Read 0 and goto q_{1}.
3. Read 0 and goto q_{1}.
4. Read 1 and goto q_{0}. Since q_{0} is not a final state 1001 is rejected.

- On input 010, the computation is

1. Start in state q_{0}. Read 0 and goto q_{0}.
2. Read 1 and goto q_{1}.
3. Read 0 and goto q_{1}. Since q_{1} is a final state 010 is accepted.

1.3 Applications

Finite Automata in Practice

- grep
- Thermostats
- Coke Machines
- Elevators
- Train Track Switches
- Security Properties
- Lexical Analyzers for Parsers

2 Formal Definitions

2.1 Deterministic Finite Automaton

Defining an Automaton

To describe an automaton, we to need to specify

- What the alphabet is,
- What the states are,
- What the initial state is,
- What states are accepting/final, and
- What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Deterministic Finite Automata
 Formal Definition

Definition 1. A deterministic finite automaton (DFA) is $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ "Next-state" transition function

	0	1
q_{0}	q_{0}	q_{1}
q_{1}	q_{1}	q_{0}

Figure 5: Transition Table representation

- $q_{0} \in Q$ initial state
- $F \subseteq Q$ final/accepting states

Given a state and a symbol, the next state is "determined".

Formal Example of DFA

Example 2.

Figure 4: Transition Diagram of DFA
Formally the automaton is $M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ where

$$
\begin{array}{ll}
\delta\left(q_{0}, 0\right)=q_{0} & \delta\left(q_{0}, 1\right)=q_{1} \\
\delta\left(q_{1}, 0\right)=q_{1} & \delta\left(q_{1}, 1\right)=q_{0}
\end{array}
$$

Computation

 and states $q_{1}, q_{2} \in Q$, we say $q_{1} \xrightarrow{w} q_{2}$ if there is a sequence of states $r_{0}, r_{1}, \ldots r_{k}$ such that

- $r_{0}=q_{1}$,
- for each $i, \delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$, and
- $r_{k}=q_{2}$.

Definition 4. For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and string $w \in \Sigma^{*}$, we say M accepts w iff $q_{0} \xrightarrow{w} q$ for some $q \in F$.

Useful Notation

Definition 5. For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, let us define a function $\hat{\delta}_{M}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$ such that $\hat{\delta}_{M}(q, w)=\left\{q^{\prime} \in Q \mid q \xrightarrow{w}_{M} q^{\prime}\right\}$.

We could say M accepts w iff $\hat{\delta}_{M}\left(q_{0}, w\right) \cap F \neq \emptyset$.
Proposition 6. For a $D F A M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, and any $q \in Q$, and $w \in \Sigma^{*},\left|\hat{\delta}_{M}(q, w)\right|=1$.

Acceptance/Recognition

Definition 7. The language accepted or recognized by a DFA M over alphabet Σ is $\mathbf{L}(M)=\{w \in$ $\Sigma^{*} \mid M$ accepts $\left.w\right\}$. A language L is said to be accepted/recognized by M if $L=\mathbf{L}(M)$.

2.2 Examples

Example I

Figure 6: Automaton accepts all strings of 0 s and 1 s

Example II

Figure 7: Automaton accepts strings ending in 1

Example III

Figure 8: Automaton accepts strings having an odd number of 1 s

Example IV

Figure 9: Automaton accepts strings having an odd number of 1 s and odd number of 0 s

3 Designing DFAs

3.1 General Method

Typical Problem

Problem

Given a language L, design a DFA M that accepts L, i.e., $\mathbf{L}(M)=L$.

Methodology

- Imagine yourself in the place of the machine, reading symbols of the input, and trying to determine if it should be accepted.
- Remember at any point you have only seen a part of the input, and you don't know when it ends.
- Figure out what to keep in memory. It cannot be all the symbols seen so far: it must fit into a finite number of bits.

3.2 Examples

Strings containing 0

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that contain at least one 0 .

Solution

What do you need to remember? Whether you have seen a 0 so far or not!

Figure 10: Automaton accepting strings with at least one 0.

Even length strings

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have an even length.

Solution

What do you need to remember? Whether you have seen an odd or an even number of symbols.

Figure 11: Automaton accepting strings of even length.

Pattern Recognition

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have 001 as a substring, where u is a substring of w if there are w_{1} and w_{2} such that $w=w_{1} u w_{2}$.

Solution

What do you need to remember? Whether you

- haven't seen any symbols of the pattern
- have just seen 0
- have just seen 00
- have seen the entire pattern 001

Pattern Recognition Automaton

Figure 12: Automaton accepting strings having 001 as substring.
grep Problem

Problem

Given text T and string s, does s appear in T ?
Naïve Solution

Running time $=O(n t)$, where $|T|=t$ and $|s|=n$.
grep Problem
Smarter Solution

Solution

- Build DFA M for $L=\{w \mid$ there are u, v s.t. $w=u s v\}$
- Run M on text T

Time $=$ time to build $M+O(t)$!

Questions

- Is L regular no matter what s is?
- If yes, can M be built "efficiently"?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

Multiples

Problem

Design an automaton that accepts all strings w over $\{0,1\}$ such that w is the binary representation of a number that is a multiple of 5 .

Solution

What must be remembered? The remainder when divided by 5 .
How do you compute remainders?

- If w is the number n then $w 0$ is $2 n$ and $w 1$ is $2 n+1$.
- $(a . b+c) \bmod 5=(a .(b \bmod 5)+c) \bmod 5$
- e.g. $1011=11($ decimal $) \equiv 1 \bmod 510110=22($ decimal $) \equiv 2 \bmod 510111=23($ decimal $)$ $\equiv 3 \bmod 5$

Automaton for recognizing Multiples

Figure 13: Automaton recognizing binary numbers that are multiples of 5.

A One k-positions from end

Problem

Design an automaton for the language $L_{k}=\{w \mid k$ th character from end of w is 1$\}$

Solution

What do you need to remember? The last k characters seen so far!
Formally, $M_{k}=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$

- States $=Q=\left\{\langle w\rangle \mid w \in\{0,1\}^{*}\right.$ and $\left.|w| \leq k\right\}$
- $\delta(\langle w\rangle, b)= \begin{cases}\langle w b\rangle & \text { if }|w|<k \\ \left\langle w_{2} w_{3} \ldots w_{k} b\right\rangle & \text { if } w=w_{1} w_{2} \ldots w_{k}\end{cases}$
- $q_{0}=\langle\epsilon\rangle$
- $F=\left\{\left\langle 1 w_{2} w_{3} \ldots w_{k}\right\rangle \mid w_{i} \in\{0,1\}\right\}$

