Administrivia

1 Staff, and Office Hours

Instructional Staff

- Instructor:
- Mahesh Viswanathan (vmahesh)
- Teaching Assistants:
- Santosh Prabhu (prabhum2)
- Matt Wala (wala1)
- Chao Xu (chaoxu3)
- Office Hours: See course webpage

2 Resources

Electronic Bulletin Boards

- Webpage: courses.engr.illinois.edu/cs373
- Newsgroup: We will use Piazza. Sign up at piazza.com/illinois/fall2013/cs373. Piazza discussion page is piazza.com/illinois/fall2013/cs373/home

Resources for class material

- Prerequisites: All material in CS 173, and CS 225
- Lecture Notes: Available on the web-page
- Additional References
- Introduction to the Theory of Computation: Michael Sipser
- Introduction to Automata Theory, Languages, and Computation: Hopcroft, and Ullman
- Introduction to Automata Theory, Languages, and Computation: Hopcroft, Motwani, and Ullman
- Elements of the Theory of Computation: Lewis, and Papadimitriou

3 Grading Scheme

Grading Policy: Overview

Total Grade and Weight

- Homeworks: 20%
- Quizzes: 10%
- Midterms: $40 \%(2 \times 20)$
- Finals: 30\%

Homeworks

- One homework every week: Assigned on Thursday and due the following Thursday (midnight in homework drop boxes)
- No late homeworks. Lowest two homework scores will be dropped.
- Homeworks may be solved in groups of size at most 3 except homework 1.
- Homework 1 will be solved online.
- For the other homeworks, read Homework Guidelines on course website.

Quizzes

- The day before every class on Moodle.
- About 25 to 26 in total.
- We will drop the 5 lowest scores.

Examinations

- First Midterm: October 3, 7 pm to $8: 30 \mathrm{pm}$
- Second Midterm: October 31, 7pm to $8: 30 \mathrm{pm}$
- Final Exam: December 18, 7pm to 10pm
- Midterms will only test material since the previous exam
- Final Exam will test all the course material

Course Overview

4 Computation

Objectives

Understand the nature of computation in a manner that is independent of our understanding of physical laws (or of the laws themselves)

- Its a fundamental scientific question
- Provides the foundation for the science of computationally solving problems

Problems through the Computational Lens

Mathematical problems look fundamentally different when viewed through the computational lens

- Not all problems equally easy to solve - some will take longer or use more memory, no matter how clever you are
- Not all problems can be solved!
- The "complexity" of the problem influences the nature of the solution
- May explore alternate notions of "solving" like approximate solutions, "probabilistically correct" solutions, partial solutions, etc.

5 Overview

Course Overview

The three main computational models/problem classes in the course

Computational Model	Applications
Finite State Machines/	text processing, lexical analy-
Regular Expressions	sis, protocol verification
Pushdown Automata/	compiler parsing, software Context-free Gram- modeling, natural language mrocessing
Turing machines	undecidability, computational complexity, cryptography

6 Skills

Skills

- Comprehend mathematical definitions
- Write mathematical definitions
- Comprehend mathematical proofs
- Write mathematical proofs

Mathematics Background

7 Sets, Functions, and Relations

Sets

Sets

A set is a (unordered) collection of objects without repetition. The objects in the set are called elements/members. Sets can be described formally

- By listing the elements inside braces, e.g. $\{3,7,10\}$
- Using the set builder notation, like $\{w \mid p(w)\}$ where $p(\cdot)$ is a predicate. For example, $\{n \in$ $\mathbb{N} \mid n \bmod 2=0\}$ is the set of all even natural numbers.

We will denote: the set of natural numbers by $\mathbb{N}(0 \in \mathbb{N})$; the empty set \emptyset.
A set A is finite if it has finitely many elements. A is an infinite set if it is not finite. For example \mathbb{N} is an infinite set. The cardinality of a set A is the number of elements in A, and we denote that by $|A|$.
A is a subset of B (denoted $A \subseteq B$) if every element of A is also an element of $B . A$ is a proper subset of B (denoted $A \subsetneq B$) if $A \subseteq B$ and $A \neq B$.

Operations on Sets

Given sets A and B subsets of a universe U, we can define the following operations
union $A \cup B=\{w \in U \mid w \in A$ or $w \in B\}$
intersection $A \cap B=\{w \in U \mid w \in A$ and $w \in B\}$
difference $A \backslash B=\{w \in U \mid w \in A$ and $w \notin B\}$
complement $\bar{A}=\{w \in U \mid w \notin A\}$
powerset $\mathcal{P}(A)=\{K \subseteq U \mid K \subseteq A\}$

Sequences and Tuples

- A sequence is a ordered list of elements. For example, the sequence $7,2,3,3$ is different than $2,7,3,3$ and $7,2,3$. Sequences maybe finite or infinite.
- A tuple is a finite sequence. A k-tuple has k elements. A pair is a 2-tuple.
- For sets A, B, the Cartesian product of A and B, denoted $A \times B$, is the set of all pairs where the first element belongs to A and the second element belongs to B.
- For sets $A_{1}, \ldots A_{k}$, the set $A_{1} \times A_{2} \times \cdots \times A_{k}$ is the collection of all k-tuples where the i th element is a member of A_{i}.

Functions and Relations

Functions

A function $f: A \rightarrow B$ maps each element of A to some element of $B ; A$ is said to be the domain of f and B is the co-domain. The range of f is the set $\{b \in B \mid \exists a \in A . f(a)=b\}$. A function $f: A \rightarrow B$ is said to be onto if the range of f is B. f is 1 -to- 1 iff $f(x)=f(y)$ implies that $x=y$. If f is 1 -to- 1 and onto then it is said to be bijective.

When the domain of function f is a set of the form $A_{1} \times A_{2} \times \cdots \times A_{k}$ then it called a k-ary function.

Relations

A k-ary relation on A is a $R \subseteq A \times A \times A$, i.e., it is a set of k-tuples all of whose elements are members of A. A 2-ary relation is called binary relation. A binary relation $R \subseteq A \times A$ is

- reflexive if for every $a \in A,(a, a) \in R$,
- symmetric if for every $a, b \in A,(a, b) \in R$ implies $(b, a) \in R$.
- transitive if for every $a, b, c \in A,(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$.
- equivalence if R is reflexive, symmetric, and transitive.

7.1 Alphabets, Strings and Languages

Alphabet

Definition 1. An alphabet is any finite, non-empty set of symbols. We will usually denote it by Σ.
Example 2. Examples of alphabets include $\{0,1\}$ (binary alphabet); $\{a, b, \ldots, z\}$ (English alphabet); the set of all ASCII characters; \{moveforward, moveback, rotate90\}.

Strings

Definition 3. A string or word over alphabet Σ is a (finite) sequence of symbols in Σ. Examples are '0101001', 'string', '〈moveback $\rangle\langle$ rotate 90\rangle '

- ϵ is the empty string.
- The length of string u (denoted by $|u|)$ is the number of symbols in u. Example, $|\epsilon|=0$, $|011010|=6$.
- Concatenation: $u v$ is the string that has a copy of u followed by a copy of v. Example, if $u={ }^{\prime} c a t$ ' and $v=$ 'nap' then $u v={ }^{\prime}{ }^{\prime}$ catnap'. If $v=\epsilon$ the $u v=v u=u$.
- u is a prefix of v if there is a string w such that $v=u w$. Example 'cat' is a prefix of 'catnap'.

Languages

Definition 4. - For alphabet Σ, Σ^{*} is the set of all strings over $\Sigma . \Sigma^{n}$ is the set of all strings of length n.

- A language over Σ is a set $L \subseteq \Sigma^{*}$. For example $L=\{1,01,11,001\}$ is a language over $\{0,1\}$.

8 Proofs

8.1 Induction Proofs

Induction Principle

- Infinite sequence of statements S_{0}, S_{1}, \ldots
- Goal: Prove $\forall i . S_{i}$ is true
- Prove S_{0} is true [Base Case]
- For an arbitrary i, assuming S_{j} is true for all $j<i$ [Induction Hypothesis], establishes S_{i} to be true [Induction Step].
- Conclude $\forall i . S_{i}$ is true.

Why does induction work?

- Assume S_{0} is true (Base case holds), and for any i, assuming S_{j} is true for all $j<i$, we can conclude S_{i} is true (Induction step holds).
- Suppose (for contradiction) S_{i} does not hold for some i.
- Let k be the smallest i such that S_{i} does not hold. Existence of such a smallest k is a consequence of a property of natural numbers that any non-empty set of natural numbers has a smallest element in it (Well-ordering principle).
- That means for all $j<k, S_{j}$ holds.
- Then by the induction step, S_{k} holds! Contradiction, establishing that S_{i} holds for all i.

Example

Proposition 5. Prove that the sum of the first k odd numbers is k th square. That is, for all k, $\sum_{i=1}^{k}(2 i-1)=k^{2}$.

Proof. The result can be proved by induction on k.
Base Case Consider the case when $k=1$. Then $\sum_{i=1}^{k}(2 i-1)=2.1-1=1=1^{2}$. This proves the base case.

Ind. Hyp. Assume that for all $k<k_{0}, \sum_{i=1}^{k}(2 i-1)=k^{2}$.
Ind. Step Consider $k=k_{0}$. Then we have,

$$
\begin{array}{rlr}
\sum_{i=1}^{k_{0}}(2 i-1) & =\sum_{i=1}^{k_{0}-1}(2 i-1)+\left(2 k_{0}-1\right) \\
& =\left(k_{0}-1\right)^{2}+\left(2 k_{0}-1\right) & \\
& =\left(k_{0}^{2}-2 k_{0}+1\right)+\left(2 k_{0}-1\right) \\
& =k_{0}^{2} &
\end{array}
$$

Thus, the induction step is established.

