
Administrivia

1 Staff, and Office Hours

Instructional Staff

• Instructor:

– Mahesh Viswanathan (vmahesh)

• Teaching Assistants:

– Santosh Prabhu (prabhum2)

– Matt Wala (wala1)

– Chao Xu (chaoxu3)

• Office Hours: See course webpage

2 Resources

Electronic Bulletin Boards

• Webpage: courses.engr.illinois.edu/cs373

• Newsgroup: We will use Piazza. Sign up at piazza.com/illinois/fall2013/cs373. Piazza
discussion page is piazza.com/illinois/fall2013/cs373/home

Resources for class material

• Prerequisites: All material in CS 173, and CS 225

• Lecture Notes: Available on the web-page

• Additional References

– Introduction to the Theory of Computation: Michael Sipser

– Introduction to Automata Theory, Languages, and Computation: Hopcroft, and Ullman

– Introduction to Automata Theory, Languages, and Computation: Hopcroft, Motwani,
and Ullman

– Elements of the Theory of Computation: Lewis, and Papadimitriou

1

3 Grading Scheme

Grading Policy: Overview
Total Grade and Weight

• Homeworks: 20%

• Quizzes: 10%

• Midterms: 40% (2× 20)

• Finals: 30%

Homeworks

• One homework every week: Assigned on Thursday and due the following Thursday (midnight
in homework drop boxes)

• No late homeworks. Lowest two homework scores will be dropped.

• Homeworks may be solved in groups of size at most 3 except homework 1.

• Homework 1 will be solved online.

• For the other homeworks, read Homework Guidelines on course website.

Quizzes

• The day before every class on Moodle.

• About 25 to 26 in total.

• We will drop the 5 lowest scores.

Examinations

• First Midterm: October 3, 7pm to 8:30pm

• Second Midterm: October 31, 7pm to 8:30pm

• Final Exam: December 18, 7pm to 10pm

• Midterms will only test material since the previous exam

• Final Exam will test all the course material

Course Overview

2

4 Computation

Objectives

Understand the nature of computation in a manner that is independent of our understanding of
physical laws (or of the laws themselves)

• Its a fundamental scientific question

• Provides the foundation for the science of computationally solving problems

Problems through the Computational Lens

Mathematical problems look fundamentally different when viewed through the computational lens

• Not all problems equally easy to solve — some will take longer or use more memory, no matter
how clever you are

• Not all problems can be solved!

• The “complexity” of the problem influences the nature of the solution

– May explore alternate notions of “solving” like approximate solutions, “probabilistically
correct” solutions, partial solutions, etc.

5 Overview

Course Overview

The three main computational models/problem classes in the course

Computational Model Applications

Finite State Machines/
Regular Expressions

text processing, lexical analy-
sis, protocol verification

Pushdown Automata/
Context-free Gram-
mars

compiler parsing, software
modeling, natural language
processing

Turing machines undecidability, computational
complexity, cryptography

3

6 Skills

Skills

• Comprehend mathematical definitions

• Write mathematical definitions

• Comprehend mathematical proofs

• Write mathematical proofs

Mathematics Background

7 Sets, Functions, and Relations

Sets

Sets
A set is a (unordered) collection of objects without repetition. The objects in the set are called
elements/members. Sets can be described formally

• By listing the elements inside braces, e.g. {3, 7, 10}

• Using the set builder notation, like {w | p(w)} where p(·) is a predicate. For example, {n ∈
N | n mod 2 = 0} is the set of all even natural numbers.

We will denote: the set of natural numbers by N (0 ∈ N); the empty set ∅.
A set A is finite if it has finitely many elements. A is an infinite set if it is not finite. For

example N is an infinite set. The cardinality of a set A is the number of elements in A, and we
denote that by |A|.

A is a subset of B (denoted A ⊆ B) if every element of A is also an element of B. A is a proper
subset of B (denoted A (B) if A ⊆ B and A 6= B.

Operations on Sets
Given sets A and B subsets of a universe U , we can define the following operations

union A ∪B = {w ∈ U | w ∈ A or w ∈ B}

intersection A ∩B = {w ∈ U | w ∈ A and w ∈ B}

difference A \B = {w ∈ U | w ∈ A and w 6∈ B}

complement A = {w ∈ U | w 6∈ A}

powerset P(A) = {K ⊆ U |K ⊆ A}

4

Sequences and Tuples

• A sequence is a ordered list of elements. For example, the sequence 7,2,3,3 is different than
2,7,3,3 and 7,2,3. Sequences maybe finite or infinite.

• A tuple is a finite sequence. A k-tuple has k elements. A pair is a 2-tuple.

• For sets A, B, the Cartesian product of A and B, denoted A×B, is the set of all pairs where
the first element belongs to A and the second element belongs to B.

• For sets A1, . . . Ak, the set A1 × A2 × · · · × Ak is the collection of all k-tuples where the ith
element is a member of Ai.

Functions and Relations

Functions
A function f : A → B maps each element of A to some element of B; A is said to be the domain
of f and B is the co-domain. The range of f is the set {b ∈ B | ∃a ∈ A. f(a) = b}. A function
f : A→ B is said to be onto if the range of f is B. f is 1-to-1 iff f(x) = f(y) implies that x = y.
If f is 1-to-1 and onto then it is said to be bijective.

When the domain of function f is a set of the form A1 × A2 × · · · × Ak then it called a k-ary
function.

Relations
A k-ary relation on A is a R ⊆ A × A × A, i.e., it is a set of k-tuples all of whose elements are
members of A. A 2-ary relation is called binary relation. A binary relation R ⊆ A×A is

• reflexive if for every a ∈ A, (a, a) ∈ R,

• symmetric if for every a, b ∈ A, (a, b) ∈ R implies (b, a) ∈ R.

• transitive if for every a, b, c ∈ A, (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

• equivalence if R is reflexive, symmetric, and transitive.

7.1 Alphabets, Strings and Languages

Alphabet

Definition 1. An alphabet is any finite, non-empty set of symbols. We will usually denote it by Σ.

Example 2. Examples of alphabets include {0, 1} (binary alphabet); {a, b, . . . , z} (English alpha-
bet); the set of all ASCII characters; {moveforward, moveback, rotate90}.

5

Strings

Definition 3. A string or word over alphabet Σ is a (finite) sequence of symbols in Σ. Examples
are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’

• ε is the empty string.

• The length of string u (denoted by |u|) is the number of symbols in u. Example, |ε| = 0,
|011010| = 6.

• Concatenation: uv is the string that has a copy of u followed by a copy of v. Example, if
u = ‘cat′ and v = ‘nap′ then uv = ‘catnap′. If v = ε the uv = vu = u.

• u is a prefix of v if there is a string w such that v = uw. Example ‘cat′ is a prefix of ‘catnap′.

Languages

Definition 4. • For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the set of all strings
of length n.

• A language over Σ is a set L ⊆ Σ∗. For example L = {1, 01, 11, 001} is a language over {0, 1}.

8 Proofs

8.1 Induction Proofs

Induction Principle

• Infinite sequence of statements S0, S1, . . .

• Goal: Prove ∀i. Si is true

• Prove S0 is true [Base Case]

• For an arbitrary i, assuming Sj is true for all j < i [Induction Hypothesis], establishes Si to
be true [Induction Step].

• Conclude ∀i. Si is true.

Why does induction work?

• Assume S0 is true (Base case holds), and for any i, assuming Sj is true for all j < i, we can
conclude Si is true (Induction step holds).

6

• Suppose (for contradiction) Si does not hold for some i.

• Let k be the smallest i such that Si does not hold. Existence of such a smallest k is a
consequence of a property of natural numbers that any non-empty set of natural numbers has
a smallest element in it (Well-ordering principle).

• That means for all j < k, Sj holds.

• Then by the induction step, Sk holds! Contradiction, establishing that Si holds for all i.

Example

Proposition 5. Prove that the sum of the first k odd numbers is kth square. That is, for all k,∑k
i=1(2i− 1) = k2.

Proof. The result can be proved by induction on k.

Base Case Consider the case when k = 1. Then
∑k

i=1(2i − 1) = 2.1 − 1 = 1 = 12. This proves
the base case.

Ind. Hyp. Assume that for all k < k0,
∑k

i=1(2i− 1) = k2.

Ind. Step Consider k = k0. Then we have,∑k0
i=1(2i− 1) =

∑k0−1
i=1 (2i− 1) + (2k0 − 1)

= (k0 − 1)2 + (2k0 − 1) by ind. hyp.
= (k20 − 2k0 + 1) + (2k0 − 1)
= k20

Thus, the induction step is established.

7

	Staff, and Office Hours
	Resources
	Grading Scheme
	Computation
	Overview
	Skills
	Sets, Functions, and Relations
	Alphabets, Strings and Languages

	Proofs
	Induction Proofs

